The force balance of rotating Rayleigh-Bénard convection regimes is investigated using direct numerical simulation on a laterally periodic domain, vertically bounded by no-slip walls. We provide a comprehensive view of the interplay between governing forces both in the bulk and near the walls. We observe, as in other prior studies, regimes of cells, convective Taylor columns, plumes, large-scale vortices (LSVs) and rotation-affected convection.
View Article and Find Full Text PDFWe perform direct numerical simulations of rotating Rayleigh-Bénard convection (RRBC) of fluids with low (Pr=0.1) and high (Pr≈5) Prandtl numbers in a horizontally periodic layer with no-slip bottom and top boundaries. No-slip boundaries are known to actively promote the formation of plumelike vertical disturbances, through so-called Ekman pumping, that control the ambient flow at sufficiently high rotation rates.
View Article and Find Full Text PDF