As new alloys are being developed for additive manufacturing (AM) applications, questions related to the temperature-dependent structural and compositional stability of these alloys remain. In this work, the benefits and limitations of a unique method for testing this stability are presented. This system employs the use of polychromatic synchrotron light to perform energy-dispersive x-ray diffraction (ED-XRD) on an electrostatically levitated sample at high temperatures.
View Article and Find Full Text PDFIn this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests.
View Article and Find Full Text PDFThe integrity of the final printed components is mostly dictated by the adhesion between the particles and phases that form upon solidification, which is a major problem in printing metallic parts using available In-Space Manufacturing (ISM) technologies based on the Fused Deposition Modeling (FDM) methodology. Understanding the melting/solidification process helps increase particle adherence and allows to produce components with greater mechanical integrity. We developed a phase-field model of solidification for binary alloys.
View Article and Find Full Text PDFIn this paper, the phase structure, composition distribution, grain morphology, and hardness of Al6061 alloy samples made with additive friction stir deposition (AFS-D) were examined. A nearly symmetrical layer-by-layer structure was observed in the cross section (vertical with respect to the fabrication-tool traversing direction) of the as-deposited Al6061 alloy samples made with a back-and-forth AFS-D strategy. Equiaxed grains were observed in the region underneath the fabrication tool, while elongated grains were seen in the "flash region" along the mass flow direction.
View Article and Find Full Text PDFCurrently, no commercial aluminum 7000 series filaments are available for making aluminum parts using fused deposition modeling (FDM)-based additive manufacturing (AM). The key technical challenge associated with the FDM of aluminum alloy parts is consolidating the loosely packed alloy powders in the brown-body, separated by thin layers of surface oxides and polymer binders, into a dense structure. Classical pressing and sintering-based powder metallurgy (P/M) technologies are employed in this study to assist the development of FDM processing strategies for making strong Al7075 AM parts.
View Article and Find Full Text PDF