Publications by authors named "Jonathan R Lakey"

Background: The global incidence of type 2 diabetes (T2D) persists at epidemic proportions. Early diagnosis and/or preventive efforts are critical to attenuate the multi-systemic clinical manifestation and consequent healthcare burden. Despite enormous strides in the understanding of pathophysiology and on-going therapeutic development, effectiveness and access are persistent limitations.

View Article and Find Full Text PDF

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice.

View Article and Find Full Text PDF

The origins of low-temperature tissue storage research date back to the late 1800s. Over half a century later, osmotic stress was revealed to be a main contributor to cell death during cryopreservation. Consequently, the addition of cryoprotective agents (CPAs) such as dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), or propylene glycol (PG), although toxic to cells at high concentrations, was identified as a necessary step to protect against rampant cell death during cryopreservation.

View Article and Find Full Text PDF

For the advancement of porcine xenotransplantation for clinical use in type 1 diabetes mellitus, the concerns of a sustainable and safe digestion enzyme blend must be overcome. Incorporating good manufacturing practices (GMP) can facilitate this through utilizing GMP-grade enzymes. In conjunction, still taking into account the cost-effectiveness, a wide concern.

View Article and Find Full Text PDF

Transplantation of pancreatic islets within a biomaterial device is currently under investigation in clinical trials for the treatment of patients with type 1 diabetes (T1D). Patients' preferences on such implants could guide the designs of next-generation implantable devices; however, such information is not currently available. We surveyed the preferences of 482 patients with T1D on the size, shape, visibility, and transplantation site of islet containing implants.

View Article and Find Full Text PDF

Translation of transplanted alginate-encapsulated pancreatic islets to treat type 1 diabetes has been hindered by inconsistent long-term efficacy. This loss of graft function can be partially attributed to islet dysfunction associated with the destruction of extracellular matrix (ECM) interactions during the islet isolation process as well as immunosuppression-associated side effects. This study aims at recapitulating islet-ECM interactions by the direct functionalization of alginate with the ECM-derived peptides RGD, LRE, YIGSR, PDGEA, and PDSGR.

View Article and Find Full Text PDF

Islet transplantation has been shown to restore normoglycemia clinically. One of the current limitations to the widespread clinical use of islet transplantation is culturing and preserving more than 1 million islet equivalents in preparation for transplant. One possible solution is to bank frozen islets and use them when needed.

View Article and Find Full Text PDF

Islet transplantation has been shown to restore normoglycemia in animal models and for type 1 diabetic patients in clinical trials. One method of storing islets intended for transplantation is via cryobanking at very low temperatures (-196 °C). Cryobanking islets without the use of cryoprotecting agents (CPAs) contributes to cellular shear stress and cell death.

View Article and Find Full Text PDF

Cycloferin is an extract of the chemicals from the species, which grows only in small areas in the southwest and southeast of South Africa and has been consumed traditionally as a nourishing tea to treat numerous health issues and illnesses. Previous studies report that some of the active compounds in Cycloferin, such as pinitol (a modified sugar) and mangiferin (a glucoside), may reduce blood sugar levels and therefore may be used as a treatment for diabetes. Mangiferin, in particular, has been shown to stimulate carbohydrate oxidation and alleviate some effects of insulin resistance and hyperglycemia.

View Article and Find Full Text PDF

Success of cell therapy in avascular sites will depend on providing sufficient blood supply to transplanted tissues. A popular strategy of providing blood supply is to embed cells within a functionalized hydrogel implanted within the host to stimulate neovascularization. However, hydrogel systems are not always amenable for removal post-transplantation; thus, it may be advantageous to implant a device that contains cells while also providing access to the circulation so retrieval is possible.

View Article and Find Full Text PDF

Background: The liver as transplantation site for human pancreatic islets is a harsh microenvironment for islets and it lacks the ability to retrieve the graft. A retrievable, extrahepatic transplantation site that mimics the pancreatic environment is desired. Ideally, this transplantation site should be located subdermal for easy surgical-access but this never resulted in normoglycemia.

View Article and Find Full Text PDF

Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves.

View Article and Find Full Text PDF

Aim: To investigate outcomes and predictors of in-hospital morbidity and mortality after total pancreatectomy (TP) and islet autotransplantation.

Methods: The nationwide inpatient sample (NIS) database was used to identify patients who underwent TP and islet autotransplantation (IAT) between 2002-2012 in the United States. Variables of interest were inherent variables of NIS database which included demographic data (age, sex, and race), comorbidities (such as diabetes mellitus, hypertension, and deficiency anemia), and admission type (elective vs non-elective).

View Article and Find Full Text PDF

The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities.

View Article and Find Full Text PDF

Background: During the process of islet isolation, pancreatic enzymes are activated and released, adversely affecting islet survival and function. We hypothesize that the exocrine component of pancreases harvested from pre-weaned juvenile pigs is immature and hence pancreatic tissue from these donors is protected from injury during isolation and prolonged tissue culture.

Methods: Biopsy specimens taken from pancreases harvested from neonatal (5-10 days), pre-weaned juvenile (18-22 days), weaned juvenile (45-60 days), and young adult pigs (>90 days) were fixed and stained with hematoxylin and eosin.

View Article and Find Full Text PDF

Aims/hypothesis: There are potential advantages to the low-temperature (-196 °C) banking of isolated islets, including the maintenance of viable islets for future research. We therefore assessed the in vitro and in vivo function of islets cryopreserved for nearly 20 years.

Methods: Human islets were cryopreserved from 1991 to 2001 and thawed between 2012 and 2014.

View Article and Find Full Text PDF

Background: Porcine islet xenotransplantation has been demonstrated in many animal studies to cure experimentally induced diabetes. However, several issues currently impede the translation of porcine islet xenotransplantation to sustained insulin independence clinically. Although adult pigs have mature islets that secrete insulin in response to a glucose challenge, and are physiologically similar to humans, there are logistical considerations with adult porcine tissue that are not present with juvenile porcine tissue.

View Article and Find Full Text PDF

Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues.

View Article and Find Full Text PDF

Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy.

View Article and Find Full Text PDF

The aim of this study was to assess recovery, cell death, and cell composition of post-thaw cultured human islets. Cryopreserved islets were provided by the Clinical Islet Transplant Program, Edmonton, Canada. Islets were processed using media prepared in accordance with Pre-Edmonton and Edmonton protocols.

View Article and Find Full Text PDF

Encapsulation of tissue has been an area of intense research with a myriad number of therapeutic applications as diverse as cancer, tissue regeneration, and diabetes. In the case of diabetes, transplantation of pancreatic islets of Langerhans containing insulin-producing beta cells has shown promise toward a cure. However, anti-rejection therapy that is needed to sustain the transplanted tissue has numerous adverse effects, and the islets might still be damaged by immune processes.

View Article and Find Full Text PDF

Aim: To study the protective effect of a fibrin scaffold toward embedded young porcine endocrine pancreatic islets from hydrogen peroxide within the context of islet encapsulation in transplantation.

Methods: After isolation and in vitro maturation, groups of 200 young porcine islet equivalents (IEQ) were embedded in a 200 µL fibrin gel and exposed to 2 concentrations (10 and 100 µM) of hydrogen peroxide (H2O2) to investigate the ability of fibrin to protect islets against apoptotic stimuli. As a control, young porcine islets were seeded in tissue culture polystyrene (TCPS) well plates and exposed to the same H2O2 concentrations.

View Article and Find Full Text PDF

Alginate encapsulation reduces the risk of transplant rejection by evading immune-mediated cell injury and rejection; however, poor vascular perfusion results in graft failure. Since existing imaging models are incapable of quantifying the vascular response to biomaterial implants after transplantation, in this study, we demonstrate the use of in vivo laser speckle imaging (LSI) and wide-field functional imaging (WiFI) to monitor the microvascular environment surrounding biomaterial implants. The vascular response to two islet-containing biomaterial encapsulation devices, alginate microcapsules and a high-guluronate alginate sheet, was studied and compared after implantation into the mouse dorsal window chamber (N = 4 per implant group).

View Article and Find Full Text PDF

Cell encapsulation is a method of encasing cells in a semipermeable matrix that provides a permeable gradient for the passage of oxygen and nutrients, but effectively blocks immune-regulating cells from reaching the graft, preventing rejection. This concept has been described as early as the 1930s, but it has exhibited substantial achievements over the last decade. Several advances in encapsulation engineering, chemical purification, applications, and cell viability promise to make this a revolutionary technology.

View Article and Find Full Text PDF

Isolation of islets from market-sized pigs is costly, with considerable islet losses from fragmentation occurring during isolation and tissue culture. Fetal and neonatal pigs yield insulin unresponsive islet-like cell clusters that become glucose-responsive after extended periods of time. Both issues impact clinical applicability and commercial scale-up.

View Article and Find Full Text PDF