In this article, we discuss a class of MYC-interacting lncRNAs (long non-coding RNAs) that share the following criteria: They are direct transcriptional targets of MYC. Their expression is coordinated with the expression of MYC. They are required for sustained MYC-driven cell proliferation, and they are not essential for cell survival.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
September 2023
Recent cryo-electron microscopic (cryo-EM) investigations have succeeded in the analysis of various structural conformations and functional states of PI3Kα, a dimer consisting of the catalytic subunit p110α and the regulatory subunit p85α of class IA of phosphoinositide 3-kinase. High resolution structures have been obtained of the unliganded and of BYL-719-bound PI3Kα. The latter provides information on excessively flexible domains of p85α that are then further analyzed with nanobodies and CXMS (chemical cross-linking, digestion and mass spectrometry).
View Article and Find Full Text PDFMYC controls most of the non-coding genome. Several long noncoding transcripts were originally identified in the human B cell line P496-3 and then shown to be required for MYC-driven proliferation of Burkitt lymphoma-derived RAMOS cells. In this study, we used RAMOS cells exclusively as a representative of the human B cell lineage.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that perform multiple and important cellular functions. The protein investigated here belongs to class IA of the PI3Ks; it is a dimer consisting of a catalytic subunit, p110α, and a regulatory subunit, p85α, and is referred to as PI3Kα. The catalytic subunit p110α is frequently mutated in cancer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Nanobodies and chemical cross-linking were used to gain information on the identity and positions of flexible domains of PI3Kα. The application of chemical cross-linking mass spectrometry (CXMS) facilitated the identification of the p85 domains BH, cSH2, and SH3 as well as their docking positions on the PI3Kα catalytic core. Binding of individual nanobodies to PI3Kα induced activation or inhibition of enzyme activity and caused conformational changes that could be correlated with enzyme function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases essential for growth and metabolism. Their aberrant activation is associated with many types of cancers. Here we used single-particle cryoelectron microscopy (cryo-EM) to determine three distinct conformations of full-length PI3Kα (p110α-p85α): the unliganded heterodimer PI3Kα, PI3Kα bound to the p110α-specific inhibitor BYL-719, and PI3Kα exposed to an activating phosphopeptide.
View Article and Find Full Text PDFWe report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain.
View Article and Find Full Text PDFMYC controls the transcription of large numbers of long noncoding RNAs (lncRNAs). Since MYC is a ubiquitous oncoprotein, some of these lncRNAs probably play a significant role in cancer. We applied CRISPR interference (CRISPRi) to the identification of MYC-regulated lncRNAs that are required for MYC-driven cell proliferation in the P493-6 and RAMOS human lymphoid cell lines.
View Article and Find Full Text PDFTumor formation is generally linked to the acquisition of two or more driver genes that cause normal cells to progress from proliferation to abnormal expansion and malignancy. In order to understand genetic alterations involved in this process, we compared the transcriptomes of an isogenic set of breast epithelial cell lines that are non-transformed or contain a single or double knock-in (DKI) of PIK3CA (H1047R) or KRAS (G12V). Gene set enrichment analysis revealed that DKI cells were enriched over single mutant cells for genes that characterize a MYC target gene signature.
View Article and Find Full Text PDFExtracellular small RNAs (sRNAs), including microRNAs (miRNAs), are promising biomarkers for diseases such as Duchenne muscular dystrophy (DMD), although their biological relevance is largely unknown. To investigate the relationship between intracellular and extracellular sRNA levels on a global scale, we performed sRNA sequencing in four muscle types and serum from wild-type, dystrophic mdx, and mdx mice in which dystrophin protein expression was restored by exon skipping. Differentially abundant sRNAs were identified in serum (mapping to miRNA, small nuclear RNA [snRNA], and PIWI-interacting RNA [piRNA] loci).
View Article and Find Full Text PDFThe main regulatory subunits of Class IA phosphatidylinositol 3-kinase (PI3K), p85α and p85β, initiate diverse cellular activities independent of binding to the catalytic subunit p110. Several of these signaling processes directly or indirectly contribute to a regulation of PI3K and could become targets for therapeutic efforts. Areas covered: This review will highlight two general areas of p85 activity: (1) direct interaction with regulatory proteins and with determinants of the cytoskeleton, and (2) a genetic analysis by deletion and domain switches identifying new functions for p85 domains.
View Article and Find Full Text PDFSelenoproteins, defined by the presence of selenocysteines (Sec), play important roles in a wide range of biological processes. All known selenoproteins are marked by the presence of Sec insertion sequence (SECIS) at their mRNA. The lack of an effective analytical method has hindered our ability to explore the selenoproteome and new selenoproteins beyond SECIS.
View Article and Find Full Text PDFMYC is a key transcriptional regulator involved in cellular proliferation and has established roles in transcriptional elongation and initiation, microRNA regulation, apoptosis, and pluripotency. Despite this prevalence, functional chemical probes of MYC function at the protein level have been limited. Previously, we discovered 5a, that binds to MYC with potency and specificity, downregulates the transcriptional activities of MYC and shows efficacy in vivo.
View Article and Find Full Text PDFOur understanding of isoform-specific activities of phosphatidylinositol 3-kinase (PI3K) is still rudimentary, and yet, deep knowledge of these non-redundant functions in the PI3K family is essential for effective and safe control of PI3K in disease. The two major isoforms of the regulatory subunits of PI3K are p85α and p85β, encoded by the genes PIK3R1 and PIK3R2, respectively. These isoforms show distinct functional differences that affect and control cellular PI3K activity and signaling [1-4].
View Article and Find Full Text PDFSmall, noncoding RNAs are short untranslated RNA molecules, some of which have been associated with cancer development. Recently we showed that a class of small RNAs generated during the maturation process of tRNAs (tRNA-derived small RNAs, hereafter "tsRNAs") is dysregulated in cancer. Specifically, we uncovered tsRNA signatures in chronic lymphocytic leukemia and lung cancer and demonstrated that the cluster (now called "" and "," respectively), , and are down-regulated in these malignancies.
View Article and Find Full Text PDFHIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The "shock and kill" strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64).
View Article and Find Full Text PDFNuclear run-on (NRO) is a method that measures transcriptional activity via the quantification of biochemically labeled nascent RNA molecules derived from nuclear isolates. Widespread use of this technique has been limited because of its technical difficulty relative to steady-state total mRNA analyses. Here we describe a detailed protocol for the quantification of transcriptional activity in human cell cultures.
View Article and Find Full Text PDFUsing RNA-seq (RNA sequencing) of ribosome-depleted RNA, we have identified 1,273 lncRNAs (long non-coding RNAs) in P493-6 human B-cells. Of these, 534 are either up- or downregulated in response to MYC overexpression. An increase in MYC occupancy near their TSS (transcription start sites) was observed for MYC-responsive lncRNAs suggesting these are direct MYC targets.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2015
We have compared the proteome, transcriptome, and metabolome of two cell lines: the human breast epithelial line MCF-10A and its mutant descendant MCF-10A-H1047R. These cell lines are derived from the same parental stock and differ by a single amino acid substitution (H1047R) caused by a single nucleotide change in one allele of the PIK3CA gene, which encodes the catalytic subunit p110α of PI3K (phosphatidylinositol 3-kinase). They are considered isogenic.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
Expression of the regulatory subunit p85β of PI3K induces oncogenic transformation of primary avian fibroblasts. The transformed cells proliferate at an increased rate compared with nontransformed controls and show elevated levels of PI3K signaling. The oncogenic activity of p85β requires an active PI3K-TOR signaling cascade and is mediated by the p110α and p110β isoforms of the PI3K catalytic subunit.
View Article and Find Full Text PDF