RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process.
View Article and Find Full Text PDFThe ANTAR domain harnesses RNA-binding activity to promote transcription attenuation. Although several ANTAR proteins have been analyzed by high-resolution structural analyses, the residues involved in RNA-recognition and transcription attenuation have not been identified. Nor is it clear how signal-responsive domains are allosterically coupled with ANTAR domains for control of gene expression.
View Article and Find Full Text PDFEthanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. , a GI commensal and opportunistic pathogen, contains approximately 20 thanolamine ilization () genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined.
View Article and Find Full Text PDFChronic bacterial infections on medical devices, including catheter-associated urinary tract infections (CAUTI), are associated with bacterial biofilm communities that are refractory to antibiotic therapy and resistant to host immunity. Previously, we have shown that Pseudomonas aeruginosa can cause CAUTI by forming a device-associated biofilm that is independent of known biofilm exopolysaccharides. Here, we show by RNA-seq that host urine alters the transcriptome of P.
View Article and Find Full Text PDFTranscription is a discontinuous process, where each nucleotide incorporation cycle offers a decision between elongation, pausing, halting, or termination. Many -acting regulatory RNAs, such as riboswitches, exert their influence over transcription elongation. Through such mechanisms, certain RNA elements can couple physiological or environmental signals to transcription attenuation, a process where -acting regulatory RNAs directly influence formation of transcription termination signals.
View Article and Find Full Text PDFA valuable resource available in the search for new natural products is the diverse microbial life that spans the planet. A large subset of these microorganisms synthesize complex specialized metabolites exhibiting biomedically important activities. A limiting step to the characterization of these compounds is an elucidation of the genetic regulatory mechanisms that oversee their production.
View Article and Find Full Text PDFCyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V.
View Article and Find Full Text PDFThe ethanolamine utilization (eut) locus of Enterococcus faecalis, containing at least 19 genes distributed over four polycistronic messenger RNAs, appears to be regulated by a single adenosyl cobalamine (AdoCbl)-responsive riboswitch. We report that the AdoCbl-binding riboswitch is part of a small, trans-acting RNA, EutX, which additionally contains a dual-hairpin substrate for the RNA binding-response regulator, EutV. In the absence of AdoCbl, EutX uses this structure to sequester EutV.
View Article and Find Full Text PDFMagnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5-2.
View Article and Find Full Text PDFMagnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements.
View Article and Find Full Text PDFANTAR proteins are widespread bacterial regulatory proteins that have RNA-binding output domains and utilize antitermination to control gene expression at the post-initiation level. An ANTAR protein, EutV, regulates the ethanolamine-utilization genes (eut) in Enterococcus faecalis. Using this system, we present genetic and biochemical evidence of a general mechanism of antitermination used by ANTARs, including details of the antiterminator structure.
View Article and Find Full Text PDF