We report broad tunability of a femtosecond (fs) diode-pumped Cr:LiSAF laser mode-locked with a broadband saturable Bragg reflector (SBR). The SBR had seven pairs of AlO(n∼1.5) and AlGaAs(n∼3.
View Article and Find Full Text PDFA novel robust optimization algorithm is demonstrated that is largely deterministic, and yet it attempts to account for statistical variations in coating. Through Monte Carlo simulations of manufacturing, we compare the performance of a proof-of-concept antireflection (AR) coating designed with our robust optimization to that of a conventionally optimized AR coating. We find that the robust algorithm produces an AR coating with a significantly improved yield.
View Article and Find Full Text PDFWe demonstrate a high-energy femtosecond laser system that incorporates two rapidly advancing technologies: chirally-coupled-core large-mode-area Yb-fiber to ensure fundamental-mode operation and high-dispersion mirrors to enable loss-free pulse compression while preserving the diffraction-limited beam quality. Mode-locking is initiated by a saturable absorber mirror and further pulse shortening is achieved by nonlinear polarization evolution. Centered at 1045 nm with 39-MHz repetition rate, the laser emits 25-nJ, positively chirped pulses with 970-mW average power.
View Article and Find Full Text PDFWe demonstrate a tunable laser frequency comb operating near 420 nm with mode spacing of 20-50 GHz, usable bandwidth of 15 nm and output power per line of ~20 nW. Using the TRES spectrograph at the Fred Lawrence Whipple Observatory, we characterize this system to an accuracy below 1m/s, suitable for calibrating high-resolution astrophysical spectrographs used, e.g.
View Article and Find Full Text PDFWe present a new approach for designing dispersion-engineered optics based on a simple unitless spectral quantity we call the phase distortion ratio (PDR). In contrast to minimizing the group delay dispersion (GDD) deviation from the ideal, minimizing the PDR is optimal in the sense that it minimizes the fraction of pulse energy lost to phase distortions. As an example, a mirror system optimized via PDR is empirically found to result in significantly better compression of single-cycle pulses than a system designed in terms of GDD.
View Article and Find Full Text PDFWe report a single-mode diode-pumped, passively mode-locked Cr:LiSAF laser with gigahertz (GHz) repetition rate and kilowatt peak power. A low-loss saturable Bragg reflector with low modulation depth and optimized dispersion compensation mirrors enables the generation of stable, cw mode-locked, sub-100-fs pulses at 1 GHz repetition rate around 865 nm when pumping with four or six laser diodes. Using a 0.
View Article and Find Full Text PDFWe present three Cr3+:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with approximately 520 mW of absorbed pump power, up to 257, 269 and 266 mW of output power and slope efficiencies of 53%, 62% and 54% were demonstrated for Cr:LiSAF, Cr:LiSGaF and Cr:LiCAF, respectively.
View Article and Find Full Text PDFA self-referenced octave-spanning Ti:sapphire laser with 2.166 GHz repetition rate is demonstrated. The laser features both direct generation of octave-spanning spectra and a dual-output design for non-intrusive carrier-envelope (CE) phase-stabilization.
View Article and Find Full Text PDFOptimized chirped mirrors may perform suboptimally, or completely fail to satisfy specifications, when manufacturing errors are encountered. We present a robust optimization method for designing these dispersion-compensating mirror systems that are used in ultrashort pulse lasers. Possible implementation errors in layer thickness are taken into account within an uncertainty set.
View Article and Find Full Text PDFA fully analytic method for computing gradients of dispersion (to any order) for a dielectric multilayer coating is developed, and it is demonstrated how group delay gradients can be used to optimize the dispersion of such a filter. The algorithm complexity is linear with the number of layers and quadratic in dispersion order. To our knowledge, this is the first published algorithm for computing exact analytic gradients of dispersion.
View Article and Find Full Text PDFWe present a new method for measuring the spectral phase of ultrashort pulses that utilizes spectral shearing interferometry with zero delay. Unlike conventional spectral phase interferometry for direct electric-field reconstruction, which encodes phase as a sensitively calibrated fringe in the spectral domain, two-dimensional spectral shearing interferometry robustly encodes phase along a second dimension. This greatly reduces demands on the spectrometer and allows for complex phase spectra to be measured over extremely large bandwidths, potentially exceeding 1.
View Article and Find Full Text PDFWe demonstrate a new concept to vary the carrier-envelope phase of a mode-locked laser by a composite plate while keeping all other pulse parameters practically unaltered. The effect is verified externally in an interferometric autocorrelator, as well as inside the cavity of an octave-spanning femtosecond oscillator. The carrier-envelope frequency can be shifted by half the repetition rate with negligible impact on pulse spectrum and energy.
View Article and Find Full Text PDFWe demonstrate an inductive method for computing exact derivatives of reflection phase for layered media by using the transfer-matrix formalism. The algorithm scales linearly with the number of layers. We show a physically realistic approximation that leads to an efficient procedure for accurately computing dispersion significantly faster than with standard finite-difference methods.
View Article and Find Full Text PDFWe present a general design strategy for a broadband thin-film beam splitter with matched group-delay dispersion. By taking the substrate dispersion into account in the coating design, any combination of input and output can show the same dispersion for transmission and reflection. As a specific implementation, an ultrabroadband 50:50 beam splitter from 600 to 1500 nm for femtosecond laser applications was designed, fabricated, and characterized.
View Article and Find Full Text PDF