Publications by authors named "Jonathan Quanson"

The progression of castration resistant prostate cancer (CRPC) is driven by the intratumoral conversion of adrenal androgen precursors to potent androgens. The expression of aldo-keto reductase 1C3 (AKR1C3), which catalyses the reduction of weak androgens to more potent androgens, is significantly increased in CRPC tumours. The oxidation of androgens to their inactive form is catalysed by 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2), but little attention is given to the expression levels of this enzyme.

View Article and Find Full Text PDF

Liquid chromatography tandem mass spectrometry (LC-MS/MS) assays are considered the reference standard for serum steroid hormone analyses, while full urinary steroid profiles are only achievable by gas chromatography (GC-MS). Both LC-MS/MS and GC-MS have well documented strengths and limitations. Recently, commercial ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) systems have been developed.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood.

View Article and Find Full Text PDF

Context: Androgen excess is a defining feature of polycystic ovary syndrome (PCOS), but the exact origin of hyperandrogenemia remains a matter of debate. Recent studies have highlighted the importance of the 11-oxygenated C19 steroid pathway to androgen metabolism in humans. In this study, we analyzed the contribution of 11-oxygenated androgens to androgen excess in women with PCOS.

View Article and Find Full Text PDF

11-Oxygenated steroids such as 11-ketotestosterone and 11-ketodihydrotestosterone have recently been shown to play a putative role in the development and progression of castration resistant prostate cancer. In this study we report on the development of a high throughput ultra-performance convergence chromatography tandem mass spectrometry (UPC(2)-MS/MS) method for the analysis of thirteen 11-oxygenated and six canonical C19 steroids isolated from a cell culture matrix. Using an Acquity UPC(2) BEH 2-EP column we found that UPC(2) resulted in superior selectivity, increased chromatographic efficiency and a scattered elution order when compared to conventional reverse phase ultra-performance liquid chromatography (UPLC).

View Article and Find Full Text PDF

Dihydrotestosterone (DHT) is regarded as the most potent natural androgen and is implicated in the development and progression of castration resistant prostate cancer (CRPC). Under castrate conditions, DHT is produced from the metabolism of the adrenal androgen precursors, DHEA and androstenedione. Recent studies have shown that the adrenal steroid 11β-hydroxyandrostenedione (11OHA4) serves as the precursor to the androgens 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT).

View Article and Find Full Text PDF

Adrenal C steroids serve as precursors to active androgens in the prostate. Androstenedione (A4), 11β-hydroxyandrostenedione (11OHA4) and 11β-hydroxytestosterone (11OHT) are metabolised to potent androgen receptor (AR) agonists, dihydrotestosterone (DHT), 11-ketotestosterone (11KT) and 11-ketodihydrotestosterone (11KDHT). The identification of 11OHA4 metabolites, 11KT and 11KDHT, as active androgens has placed a new perspective on adrenal C11-oxy C steroids and their contribution to prostate cancer (PCa).

View Article and Find Full Text PDF

11β-Hydroxyandrostenedione (11OHA4), which is unique to the adrenal, was first isolated from human adrenal tissue in the fifties. It was later shown in the sixties that 11β-hydroxytestosterone (11OHT) was also produced by the human adrenal. Attention has shifted back to these adrenal androgens once more, as improved analytical techniques have enabled more accurate detection of steroid hormones.

View Article and Find Full Text PDF