Publications by authors named "Jonathan P Reid"

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.

View Article and Find Full Text PDF

Hypothesis: Supra-particle formation by evaporation of an aqueous aerosol droplet containing nano-colloidal particles is challenging to investigate but has significant applications. We hypothesise that the Peclet number, Pe, which compares the effectiveness of evaporation-induced advection to that of colloidal diffusion, is critical in determining supra-particle morphology and can be used to predict the dried morphology for droplet containing polydisperse nanoparticles.

Experiments: Sterically-stabilized diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA).

View Article and Find Full Text PDF

Respiratory particles produced during vocalized and nonvocalized activities such as breathing, speaking, and singing serve as a major route for respiratory pathogen transmission. This work reports concomitant measurements of exhaled carbon dioxide volume (VCO) and minute ventilation (VE), along with exhaled respiratory particles during breathing, exercising, speaking, and singing. Exhaled CO and VE measured across healthy adult participants follow a similar trend to particle number concentration during the nonvocalized exercise activities (breathing at rest, vigorous exercise, and very vigorous exercise).

View Article and Find Full Text PDF

Aerosols transform between physical phases, as they respond to variations in environmental conditions. There are many industries that depend on these dynamic processes of crystallization and dissolution. Here, a single particle technique (an electrodynamic balance) is used to explore the crystallization and dissolution dynamics of a model system, sodium chloride.

View Article and Find Full Text PDF

An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.

View Article and Find Full Text PDF

Group A streptococcus (GAS) infections result in more than 500 000 deaths annually. Despite mounting evidence for airborne transmission of GAS, little is known about its stability in aerosol. Measurements of GAS airborne stability were carried out using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS) instrument.

View Article and Find Full Text PDF

A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with -average diameters ranging from 32 to 238 nm.

View Article and Find Full Text PDF

Aims: Orthopaedic surgery uses many varied instruments with high-speed, high-impact, thermal energy and sometimes heavy instruments, all of which potentially result in aerosolization of contaminated blood, tissue, and bone, raising concerns for clinicians' health. This study quantifies the aerosol exposure by measuring the number and size distribution of the particles reaching the lead surgeon during key orthopaedic operations.

Methods: The aerosol yield from 17 orthopaedic open surgeries (on the knee, hip, and shoulder) was recorded at the position of the lead surgeon using an Aerodynamic Particle Sizer (APS; 0.

View Article and Find Full Text PDF

The mechanistic factors hypothesized to be key drivers for the loss of infectivity of viruses in the aerosol phase often remain speculative. Using a next-generation bioaerosol technology, we report measurements of the aero-stability of several SARS-CoV-2 variants of concern in aerosol droplets of well-defined size and composition at high (90%) and low (40%) relative humidity (RH) upwards of 40 min. When compared with the ancestral virus, the infectivity of the Delta variant displayed different decay profiles.

View Article and Find Full Text PDF

Introduction: Phonation and speech are known sources of respirable aerosol in humans. Voice assessment and treatment manipulate all the subsystems of voice production, and previous work (Saccente-Kennedy et al., 2022) has demonstrated such activities can generate >10 times more aerosol than conversational speech and 30 times more aerosol than breathing.

View Article and Find Full Text PDF

A refined numerical model for the evaporation and transport of droplets of binary solutions is introduced. Benchmarking is performed against other models found in the literature and experimental measurements of both electrodynamically trapped and freefalling droplets. The model presented represents the microphysical behavior of solutions droplets in the continuum and transition regimes, accounting for the unique hygroscopic behavior of different solutions, including the Fuchs-Sutugin and Cunningham slip correction factors, and accounting for the Kelvin effect.

View Article and Find Full Text PDF

While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth.

View Article and Find Full Text PDF

Given the environmental compulsion to reformulate pressurised metered dose inhalers (pMDI) using new propellants with lower global warming potential, this study investigated how non-volatile excipients can be used to engineer aerosol particle microphysics and drug release. The dynamics of change in particle size, wetting and physical state were measured for single particles (glycerol/ethanol/beclomethasone dipropionate; BDP) in the aerosol phase at different relative humidity (RH) using an electrodynamic balance. BDP dissolution rates were compared for aerosols from pMDI containing different ratios of BDP:glycerol or BDP:isopropyl myristate (IPM).

View Article and Find Full Text PDF

Respiratory pathogens can be spread though the transmission of aerosolised expiratory secretions in the form of droplets or particulates. Understanding the fundamental aerosol parameters that govern how such pathogens survive whilst airborne is essential to understanding and developing methods of restricting their dissemination. Pathogen viability measurements made using Controlled Electrodynamic Levitation and Extraction of Bioaerosol onto Substrate (CELEBS) in tandem with a comparative kinetics electrodynamic balance (CKEDB) measurements allow for a direct comparison between viral viability and evaporation kinetics of the aerosol with a time resolution of seconds.

View Article and Find Full Text PDF

The dynamics of binary collisions of equi-diameter picolitre droplets with identical viscosities, varying impact speeds and impact angles have been investigated experimentally and compared to collision outcome prediction models. Collisions between pairs of pure water droplets with a viscosity of 0.89 mPa s and pairs of aqueous-sucrose (40% w/w) droplets with a viscosity of 5.

View Article and Find Full Text PDF

Introduction: Voice assessment and treatment involve the manipulation of all the subsystems of voice production, and may lead to production of respirable aerosol particles that pose a greater risk of potential viral transmission via inhalation of respirable pathogens (eg, SARS-CoV-2) than quiet breathing or conversational speech.

Objective: To characterise the production of respirable aerosol particles during a selection of voice assessment therapy tasks.

Methods: We recruited 23 healthy adult participants (12 males, 11 females), 11 of whom were speech-language pathologists specialising in voice disorders.

View Article and Find Full Text PDF

Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus.

View Article and Find Full Text PDF

Background: The coronavirus disease-19 (COVID-19) pandemic led to the prohibition of group-based exercise and the cancellation of sporting events. Evaluation of respiratory aerosol emissions is necessary to quantify exercise-related transmission risk and inform mitigation strategies.

Methods: Aerosol mass emission rates are calculated from concurrent aerosol and ventilation data, enabling absolute comparison.

View Article and Find Full Text PDF

Aerosol generating procedures (AGPs) are defined as any procedure releasing airborne particles <5 μm in size from the respiratory tract. There remains uncertainty about which dental procedures constitute AGPs. We quantified the aerosol number concentration generated during a range of periodontal, oral surgery and orthodontic procedures using an aerodynamic particle sizer, which measures aerosol number concentrations and size distribution across the 0.

View Article and Find Full Text PDF

Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume.

View Article and Find Full Text PDF

COVID-19 has restricted singing in communal worship. We sought to understand variations in droplet transmission and the impact of wearing face masks. Using rapid laser planar imaging, we measured droplets while participants exhaled, said 'hello' or 'snake', sang a note or 'Happy Birthday', with and without surgical face masks.

View Article and Find Full Text PDF

Introduction: continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) provide enhanced oxygen delivery and respiratory support for patients with severe COVID-19. CPAP and HFNO are currently designated as aerosol-generating procedures despite limited high-quality experimental data. We aimed to characterise aerosol emission from HFNO and CPAP and compare with breathing, speaking and coughing.

View Article and Find Full Text PDF

Pulmonary function tests are fundamental to the diagnosis and monitoring of respiratory diseases. There is uncertainty around whether potentially infectious aerosols are produced during testing and there are limited data on mitigation strategies to reduce risk to staff. Healthy volunteers and patients with lung disease underwent standardised spirometry, peak flow and FE assessments.

View Article and Find Full Text PDF