Publications by authors named "Jonathan P McMullen"

Biocatalytic oxidations are an emerging technology for selective C-H bond activation. While promising for a range of selective oxidations, practical use of enzymes catalyzing aerobic hydroxylation is presently limited by their substrate scope and stability under industrially relevant conditions. Here, we report the engineering and practical application of a non-heme iron and α-ketoglutarate-dependent dioxygenase for the direct stereo- and regio-selective hydroxylation of a non-native fluoroindanone en route to the oncology treatment belzutifan, replacing a five-step chemical synthesis with a direct enantioselective hydroxylation.

View Article and Find Full Text PDF

A detailed mechanistic understanding of a benzylic photobromination en route to belzutifan (MK-6482, a small molecule for the treatment of renal cell carcinoma associated with von Hippel-Lindau syndrome) has been achieved using in situ LED-NMR spectroscopy in conjunction with kinetic analysis. Two distinct mechanisms of overbromination, namely, the ionic and radical pathways, have been revealed by this study. The behavior of the major reaction species, including reactants, intermediates, products, and side products, has been elucidated.

View Article and Find Full Text PDF

With the development of new photocatalytic methods over recent decades, the translation of these chemical reactions to industrial-production scales using continuous-flow reactors has become a topic of increasing interest. In this context, we describe our studies toward elucidating an empirically derived parameter for scaling photocatalytic reactions in flow. By evaluating the performance of a photocatalytic C-N cross-coupling reaction across multiple reactor sizes and geometries, it was demonstrated that expressing product yield as a function of the absorbed photon equivalents provides a predictive, empirical scaling parameter.

View Article and Find Full Text PDF

The fine chemicals and pharmaceutical industries are transforming how their products are manufactured, where economically favorable, from traditional batchwise processes to continuous flow. This evolution is impacting synthetic chemistry on all scales-from the laboratory to full production. This Review discusses the relative merits of batch and micro flow reactors for performing synthetic chemistry in the laboratory.

View Article and Find Full Text PDF

Applications of microsystems (microreactors) in continuous-flow chemistry have expanded rapidly over the past two decades, with numerous reports of higher conversions and yields compared to conventional batch benchtop equipment. Synthesis applications are enhanced by chemical information gained from integrating microreactor components with sensors, actuators, and automated fluid handling. Moreover, miniaturized systems allow experiments on well-defined samples at conditions not easily accessed by conventional means, such as reactions at high pressure and temperatures.

View Article and Find Full Text PDF

An automated, silicon-based microreactor system has been developed for rapid, low-volume, multidimensional reaction screening. Use of the microfluidic platform to identify transformations of densely functionalized bicyclo[3.2.

View Article and Find Full Text PDF