In this work, a biorefinery system including castor bean seeds and microalgae is used as a case study to evaluate the integration of second and third generation biorefineries. A biorefinery concept was applied for the combined production of polyol, ethylene-glycol, omega-3 acid, biodiesel, methanol and heat and power from castor bean and microalgae. Castor bean cake and microalgae paste were used to feed a biomass-fired system (BIGCC), where part of CO2 produced in flue gas is captured and employed as substrate for microalgae growth.
View Article and Find Full Text PDFA techno-economic analysis for use of brewer's spent grains (BSG) on a biorefinery concept for the Brazilian case is presented. Four scenarios based on different levels of heat and mass integration for the production of xylitol, lactic acid, activated carbon and phenolic acids are shown. A simulation procedure using the software Aspen Plus and experimental yields was used.
View Article and Find Full Text PDFIn this study a techno-economic analysis of the production of bioethanol from four lignocellusic (Sugarcane bagasse, Coffee cut-stems, Rice Husk, and Empty Fruit Bunches) residues is presented for the Colombian case. The ethanol production was evaluated using Aspen Plus and Aspen Process Economic Analyzer carrying out the simulation and the economic evaluation, respectively. Simulations included the composition of lignocellulosic residues, which was determined experimentally.
View Article and Find Full Text PDFIn this paper a techno-economic analysis for a sugarcane biorefinery is presented for the Colombian case. It is shown two scenarios for different conversion pathways as function of feedstock distribution and technologies for sugar, fuel ethanol, PHB, anthocyanins and electricity production. These scenarios are compared with the Colombian base case which simultaneously produce sugar, fuel ethanol and electricity.
View Article and Find Full Text PDF