Immunoprecipitation is among the most widely utilized methods in biomedical research, with applications that include the identification of antibody targets and associated proteins. The path to identifying these targets is not straightforward, however, and often requires the use of chemical cross-linking and/or gel electrophoresis to separate targets from an overabundance of immunoglobulin protein. Such experiments are labor intensive and often yield long lists of candidate antibody targets.
View Article and Find Full Text PDFMulticellular model organisms, such as (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise.
View Article and Find Full Text PDFTypical multiomics studies employ separate methods for DNA, RNA, and protein sample preparation, which is labor intensive, costly, and prone to sampling bias. We describe a method for preparing high-quality, sequencing-ready DNA and RNA, and either intact proteins or mass-spectrometry-ready peptides for whole proteome analysis from a single sample. This method utilizes a reversible protein tagging scheme to covalently link all proteins in a lysate to a bead-based matrix and nucleic acid precipitation and selective solubilization to yield separate pools of protein and nucleic acids.
View Article and Find Full Text PDFDuring embryogenesis, coordinated cell movement generates mechanical forces that regulate gene expression and activity. To study this process, tools such as aspiration or coverslip compression have been used to mechanically stimulate whole embryos. These approaches limit experimental design as they are imprecise, require manual handling, and can process only a couple of embryos simultaneously.
View Article and Find Full Text PDF, a vertically transmitted endosymbiont infecting many insects, spreads rapidly through uninfected populations by a mechanism known as cytoplasmic incompatibility (CI). In CI, a paternally delivered modification of the sperm leads to chromatin defects and lethality during and after the first mitosis of embryonic development in multiple species. However, whether CI-induced defects in later stage embryos are a consequence of the first division errors or caused by independent defects remains unresolved.
View Article and Find Full Text PDFNew microfluidic systems for whole organism analysis and experimentation are catalyzing biological breakthroughs across many fields, from human health to fundamental biology principles. This perspective discusses recent microfluidic tools to study intact model organisms to demonstrate the tremendous potential for these integrated approaches now and into the future. We describe these microsystems' technical features and highlight the unique advantages for precise manipulation in areas including immobilization, automated alignment, sorting, sensory, mechanical and chemical stimulation, and genetic and thermal perturbation.
View Article and Find Full Text PDFAntibodies and T cells specific for tumor-associated antigens (TAA) are found in individuals without cancer but with a history of infections and are associated with lowered cancer risk. We hypothesized that those immune responses were generated to transiently abnormally expressed self-antigens on infected cells (disease-associated antigens, DAA) and later on tumor cells as TAA. We tested this hypothesis in mice with a history of infection with lymphocytic choriomeningitis virus (LCMV) Armstrong strain (Arm) that causes acute infection when injected intraperitoneally or CL-13 strain that establishes chronic infection when injected intravenously.
View Article and Find Full Text PDFThe ability of immune cells to sense changes associated with malignant transformation as early as possible is likely to be important for the successful outcome of cancer immunosurveillance. In this process, the immune system faces a trade-off between elimination of cells harboring premalignant or malignant changes, and autoimmune pathologies. We hypothesized that the immune system has therefore evolved a threshold for the stage of transformation from normal to fully malignant cells that first provides a threat (danger) signal requiring a response.
View Article and Find Full Text PDFSuccessful proteome analysis requires reliable sample preparation beginning with protein solubilization and ending with a sample free of contaminants, ready for downstream analysis. Most proteome sample preparation technologies utilize precipitation or filter-based separation, both of which have significant disadvantages. None of the current technologies are able to prepare both intact proteins or digested peptides.
View Article and Find Full Text PDFTumor-associated antigens (TAA) are self-molecules abnormally expressed on tumor cells, which elicit humoral and cellular immunity and are targets of immunosurveillance. Immunity to TAAs is found in some healthy individuals with no history of cancer and correlates positively with a history of acute inflammatory and infectious events and cancer risk reduction. This suggests a potential role in cancer immunosurveillance for the immune memory elicited against disease-associated antigens (DAA) expressed on infected and inflamed tissues that are later recognized on tumors as TAAs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Mutant huntingtin (mHTT), the causative protein in Huntington's disease (HD), associates with the translocase of mitochondrial inner membrane 23 (TIM23) complex, resulting in inhibition of synaptic mitochondrial protein import first detected in presymptomatic HD mice. The early timing of this event suggests that it is a relevant and direct pathophysiologic consequence of mHTT expression. We show that, of the 4 TIM23 complex proteins, mHTT specifically binds to the TIM23 subunit and that full-length wild-type huntingtin (wtHTT) and mHTT reside in the mitochondrial intermembrane space.
View Article and Find Full Text PDFDeveloping embryos create complexity by expressing genes to coordinate movement which generates mechanical force. An emerging theory is that mechanical force can also serve as an input signal to regulate developmental gene expression. Experimental methods to apply mechanical stimulation to whole embryos have been limited, mainly to aspiration, indentation, or moving a coverslip; these approaches stimulate only a few embryos at a time and require manual alignment.
View Article and Find Full Text PDFThe molecular sieving properties of protein surface-attached polymers are the central features in how polymers extend therapeutic protein lifetimes in vivo. Yet, even after 30 years of research, permeation rates of molecules through polymer-surrounded protein surfaces are largely unknown. As a result, the generation of protein-polymer conjugates remains a stochastic process, unfacilitated by knowledge of structure-function-polymer architecture relationships.
View Article and Find Full Text PDFTwo-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2D E) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as "spots" with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios.
View Article and Find Full Text PDFWnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization.
View Article and Find Full Text PDFProteomics technologies are often used for the identification of protein targets of the immune system. Here, we discuss the immunoproteomics technologies used for the discovery of autoantigens in autoimmune diseases where immune system dysregulation plays a central role in disease onset and progression. These autoantigens and associated autoantibodies can be used as potential biomarkers for disease diagnostics, prognostics and predicting/monitoring drug responsiveness (theranostics).
View Article and Find Full Text PDFImmunoprecipitation (IP) is a widely used technique for identifying the binding partners of the target proteins of specific antibodies. Putative binding targets and their partners are usually in much lower amounts than the antibodies used to capture these target proteins. Thus antigen identification using proteomics following IP is often confounded by the presence of an overwhelming amount of interfering antibody protein.
View Article and Find Full Text PDFThe 2DE is a powerful proteomic technique, with excellent protein separation capabilities where intact proteins are spatially separated by pI and molecular weight. 2DE is commonly used in conjunction with MS to identify proteins of interest. Current 2DE workflow requires several manual processing steps that can lead to experimental variability and sample loss.
View Article and Find Full Text PDFA current challenge for proteomics is detecting proteins over the large concentration ranges found in complex biological samples such as whole-cell extracts. Currently, no unbiased, whole-proteome analysis scheme is capable of detecting the full range of cellular proteins. This is due in part to the limited dynamic range of the detectors used to sense proteins or peptides.
View Article and Find Full Text PDFMost tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAAs have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases.
View Article and Find Full Text PDFDrosophila is one of the most important model organisms in biology. Knowledge derived from the recently sequenced 12 genomes of various Drosophila species can today be combined with the results of more than 100 years of research to systematically investigate Drosophila biology at the molecular level. In order to enable automated, high-throughput manipulation of Drosophila embryos, we have developed a microfluidic system based on a Pyrex-silicon-Pyrex sandwich structure with integrated, surface-micromachined silicon nitride injector for automated injection of reagents.
View Article and Find Full Text PDFBackground: Drosophila ventral furrow formation (VFF), which is the first morphogenetic event during embryo development, serves as a model for epithelial sheet folding. VFF can be subdivided into five cell shape changes: apical membrane flattening, apicobasal nuclear migration, apicobasal cell shortening, random apical constriction, and concerted apical constriction. These processes are generally believed to be driven by Rho kinase (Rok) activation of myosin II to stimulate the constriction of the apical actomyosin network.
View Article and Find Full Text PDFTwo-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2DE) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as "spots" with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios.
View Article and Find Full Text PDFThis chapter provides a brief historical perspective of the development of difference gel electrophoresis, from its inception to commercialization and beyond.
View Article and Find Full Text PDFFragile X mental retardation protein (FMRP) is an RNA-binding protein that is required for the translational regulation of specific target mRNAs. Loss of FMRP causes Fragile X syndrome (FXS), the most common form of inherited mental retardation in humans. Understanding the basis for FXS has been limited because few in vivo targets of FMRP have been identified and mechanisms for how FMRP regulates physiological targets are unclear.
View Article and Find Full Text PDF