Relatively little is known about the way vision is used to guide locomotion in the natural world. What visual features are used to choose paths in natural complex terrain? To answer this question, we measured eye and body movements while participants walked in natural outdoor environments. We incorporated measurements of the three-dimensional (3D) terrain structure into our analyses and reconstructed the terrain along the walker's path, applying photogrammetry techniques to the eye tracker's scene camera videos.
View Article and Find Full Text PDFWalking through an environment generates retinal motion, which humans rely on to perform a variety of visual tasks. Retinal motion patterns are determined by an interconnected set of factors, including gaze location, gaze stabilization, the structure of the environment, and the walker's goals. The characteristics of these motion signals have important consequences for neural organization and behavior.
View Article and Find Full Text PDFWe examine the structure of the visual motion projected on the retina during natural locomotion in real world environments. Bipedal gait generates a complex, rhythmic pattern of head translation and rotation in space, so without gaze stabilization mechanisms such as the vestibular-ocular-reflex (VOR) a walker's visually specified heading would vary dramatically throughout the gait cycle. The act of fixation on stable points in the environment nulls image motion at the fovea, resulting in stable patterns of outflow on the retinae centered on the point of fixation.
View Article and Find Full Text PDFCoordination between visual and motor processes is critical for the selection of stable footholds when walking in uneven terrains. While recent work (Matthis et al. in Curr Biol 8(28):1224-1233, 2018) demonstrates a tight link between gaze (visual) and gait (motor), it remains unclear which aspects of visual information play a role in this visuomotor control loop, and how the loss of this information affects that relationship.
View Article and Find Full Text PDFWhen walking over stable, complex terrain, visual information about an upcoming foothold is primarily utilized during the preceding step to organize a nearly ballistic forward movement of the body. However, it is often necessary to respond to changes in the position of an intended foothold that occur around step initiation. Although humans are capable of rapidly adjusting foot trajectory mid-swing in response to a perturbation of target position, such movements may disrupt the efficiency and stability of the gait cycle.
View Article and Find Full Text PDFThe development of better eye and body tracking systems, and more flexible virtual environments have allowed more systematic exploration of natural vision and contributed a number of insights. In natural visually guided behaviour, humans make continuous sequences of sensory-motor decisions to satisfy current goals, and the role of vision is to provide the relevant information in order to achieve those goals. This paper reviews the factors that control gaze in natural visually guided actions such as locomotion, including the rewards and costs associated with the immediate behavioural goals, uncertainty about the state of the world and prior knowledge of the environment.
View Article and Find Full Text PDFHuman locomotion through natural environments requires precise coordination between the biomechanics of the bipedal gait cycle and the eye movements that gather the information needed to guide foot placement. However, little is known about how the visual and locomotor systems work together to support movement through the world. We developed a system to simultaneously record gaze and full-body kinematics during locomotion over different outdoor terrains.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
October 2017
We examine the theoretical understanding of visual gait regulation that has emerged from decades of research since the publication of Lee, Lishman, and Thompson's (1982) classic study of elite long jumpers. The first round of research identified specific informational variables, parameters of the action system, and laws of control that capture the coupling of perception and action in this context, but left unanswered important questions about why visual information is sampled in an intermittent manner and how the strategies that actors adopt ensure stability and energetic efficiency. More recent developments lead to a refined view according to which visual information is used at a specific phase of the gait cycle to modify the parameters that govern the passive dynamics of the body.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
To walk efficiently over complex terrain, humans must use vision to tailor their gait to the upcoming ground surface without interfering with the exploitation of passive mechanical forces. We propose that walkers use visual information to initialize the mechanical state of the body before the beginning of each step so the resulting ballistic trajectory of the walker's center-of-mass will facilitate stepping on target footholds. Using a precision stepping task and synchronizing target visibility to the gait cycle, we empirically validated two predictions derived from this strategy: (1) Walkers must have information about upcoming footholds during the second half of the preceding step, and (2) foot placement is guided by information about the position of the target foothold relative to the preceding base of support.
View Article and Find Full Text PDFThe aim of this study was to examine how visual information is used to control stepping during locomotion over terrain that demands precision in the placement of the feet. More specifically, we sought to determine the point in the gait cycle at which visual information about a target is no longer needed to guide accurate foot placement. Subjects walked along a path while stepping as accurately as possible on a series of small, irregularly spaced target footholds.
View Article and Find Full Text PDFA fundamental question about locomotion in the presence of moving objects is whether movements are guided based upon perceived object motion in an observer-centered or world-centered reference frame. The former captures object motion relative to the moving observer and depends on both observer and object motion. The latter captures object motion relative to the stationary environment and is independent of observer motion.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
February 2014
The aim of this study was to investigate the role of visual information in the control of walking over complex terrain with irregularly spaced obstacles. We developed an experimental paradigm to measure how far along the future path people need to see in order to maintain forward progress and avoid stepping on obstacles. Participants walked over an array of randomly distributed virtual obstacles that were projected onto the floor by an LCD projector while their movements were tracked by a full-body motion capture system.
View Article and Find Full Text PDFHow do humans achieve such remarkable energetic efficiency when walking over complex terrain such as a rocky trail? Recent research in biomechanics suggests that the efficiency of human walking over flat, obstacle-free terrain derives from the ability to exploit the physical dynamics of our bodies. In this study, we investigated whether this principle also applies to visually guided walking over complex terrain. We found that when humans can see the immediate foreground as little as two step lengths ahead, they are able to choose footholds that allow them to exploit their biomechanical structure as efficiently as they can with unlimited visual information.
View Article and Find Full Text PDFMany locomotor tasks involve interactions with moving objects. When observer (i.e.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
October 2011
The aim of this study was to investigate the perception of possibilities for action (i.e., affordances) that depend on one's movement capabilities, and more specifically, the passability of a shrinking gap between converging obstacles.
View Article and Find Full Text PDF