Target prioritization is essential for drug discovery and repositioning. Applying computational methods to analyze and process multi-omics data to find new drug targets is a practical approach for achieving this. Despite an increasing number of methods for generating datasets such as genomics, phenomics, and proteomics, attempts to integrate and mine such datasets remain limited in scope.
View Article and Find Full Text PDFThe REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
View Article and Find Full Text PDFComprehensive identification of the acquired mutations that cause common cancers will require genomic analyses of large sets of tumor samples. Typically, the tissue material available from tumor specimens is limited, which creates a demand for accurate template amplification. We therefore evaluated whether phi29-mediated whole genome amplification introduces false positive structural mutations by massive mate-pair sequencing of a normal human genome before and after such amplification.
View Article and Find Full Text PDFWe undertook a candidate locus study of the HIN200 gene cluster on 1q21-23 in UK systemic lupus erythematosus (SLE) families. To date, despite mounting evidence demonstrating the importance of these proteins in autoimmune disease, cancer, apoptosis, inflammation, and cell cycle arrest, there has been a dearth of data with respect to the genetic characterisation of the HIN200 locus in SLE or any other disease. We typed 83 single nucleotide polymorphisms (SNPs) across 317 kb of the HIN200 cluster in 428 UK SLE families and sought replication from a European-American lupus cohort.
View Article and Find Full Text PDFBackground: The forkhead box/winged helix family members FOXA1, FOXA2, and FOXA3 are of high importance in development and specification of the hepatic linage and the continued expression of liver-specific genes.
Results: Here, we present a genome-wide location analysis of FOXA1 and FOXA3 binding sites in HepG2 cells through chromatin immunoprecipitation with detection by sequencing (ChIP-seq) studies and compare these with our previous results on FOXA2. We found that these factors often bind close to each other in different combinations and consecutive immunoprecipitation of chromatin for one and then a second factor (ChIP-reChIP) shows that this occurs in the same cell and on the same DNA molecule, suggestive of molecular interactions.
Background: We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations.
View Article and Find Full Text PDFExpression quantitative trait loci (eQTLs) represent genetic control points of gene expression, and can be categorized as cis- and trans-acting, reflecting local and distant regulation of gene expression respectively. Although there is evidence of co-regulation within clusters of trans-eQTLs, the extent of co-expression patterns and their relationship with the genotypes at eQTLs are not fully understood. We have mapped thousands of cis- and trans-eQTLs in four tissues (fat, kidney, adrenal and left ventricle) in a large panel of rat recombinant inbred (RI) strains.
View Article and Find Full Text PDFLeft ventricular mass (LVM) and cardiac gene expression are complex traits regulated by factors both intrinsic and extrinsic to the heart. To dissect the major determinants of LVM, we combined expression quantitative trait locus1 and quantitative trait transcript (QTT) analyses of the cardiac transcriptome in the rat. Using these methods and in vitro functional assays, we identified osteoglycin (Ogn) as a major candidate regulator of rat LVM, with increased Ogn protein expression associated with elevated LVM.
View Article and Find Full Text PDFPostgonadectomy adrenocortical tumorigenesis is a strain-specific phenomenon in inbred mice, assumed to be caused by elevated LH secretion and subsequent ectopic LH receptor (LHR) overexpression in adrenal gland. However, the molecular mechanisms of this cascade of events remain unknown. In this study, we took advantage of the mouse strain dependency of the phenotype to unravel its genetic basis.
View Article and Find Full Text PDFBackground: With the advent of "omics" (e.g. genomics, transcriptomics, proteomics and phenomics), studies can produce enormous amounts of data.
View Article and Find Full Text PDFVariation in gene expression is heritable and has been mapped to the genome in humans and model organisms as expression quantitative trait loci (eQTLs). We applied integrated genome-wide expression profiling and linkage analysis to the regulation of gene expression in fat, kidney, adrenal, and heart tissues using the BXH/HXB panel of rat recombinant inbred strains. Here, we report the influence of heritability and allelic effect of the quantitative trait locus on detection of cis- and trans-acting eQTLs and discuss how these factors operate in a tissue-specific context.
View Article and Find Full Text PDFThe combined application of genome-wide expression profiling from microarray experiments with genetic linkage analysis enables the mapping of expression quantitative trait loci (eQTLs) which are primary control points for gene expression across the genome. This approach allows for the dissection of primary and secondary genetic determinants of gene expression. The cis-acting eQTLs in practice are easier to investigate than the trans-regulated eQTLs because they are under simpler genetic control and are likely to be due to sequence variants within the gene itself or its neighboring regulatory elements.
View Article and Find Full Text PDFIdentification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis.
View Article and Find Full Text PDFThe development of computational resources to visualize and explore data from combined genome-wide expression and linkage studies is essential for the development of testable hypotheses. eQTL Explorer stores expression profiles, linkage data and information from external sources in a relational database and enables simultaneous visualization and intuitive interpretation of the combined data via a Java graphical interface. eQTL Explorer provides a new and powerful tool to interrogate these very large and complex datasets.
View Article and Find Full Text PDF