Publications by authors named "Jonathan M Yingling"

Transforming growth factor-β (TGFβ) is an important driver of tumor growth via intrinsic and extrinsic mechanisms, and is therefore an attractive target for developing cancer therapeutics. Using preclinical models, we characterized the anti-tumor activity of a small molecule inhibitor of TGFβ receptor I (TGFβRI), galunisertib (LY2157299 monohydrate). Galunisertib demonstrated potent and selective inhibition of TGFβRI with corresponding inhibition of downstream signaling via inhibition of SMAD phosphorylation (pSMAD).

View Article and Find Full Text PDF

Aims: To identify prospectively a safe therapeutic window for administration of a novel oral transforming growth factor β (TGF-β) inhibitor, LY2157299 monohydrate, based on a pharmacokinetic/pharmacodynamic (PK/PD) model. Simulations of population plasma exposures and biomarker responses in tumour were performed for future trials of LY2157299 in glioblastoma and other cancer populations.

Methods: The model was updated after completion of each cohort during the first-in-human dose (FHD) study.

View Article and Find Full Text PDF

Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA.

View Article and Find Full Text PDF

TGF-β is produced excessively by many solid tumors and can drive malignant progression through multiple effects on the tumor cell and microenvironment. TGF-β signaling pathway inhibitors have shown efficacy in preclinical models of metastatic cancer. Here, we investigated the effect of systemic LY2109761, a TGF-β type I/II receptor (TβRI/TβRII) kinase inhibitor, in both a tumor allograft model and the mouse skin model of de novo chemically induced carcinogenesis in vivo.

View Article and Find Full Text PDF

Activation of the translation initiation factor 4E (eIF4E) promotes malignant transformation and metastasis. Signaling through the AKT-mTOR pathway activates eIF4E by phosphorylating the inhibitory 4E binding proteins (4E-BP). This liberates eIF4E and allows binding to eIF4G.

View Article and Find Full Text PDF

Even though myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis, the molecular alterations that lead to marrow failure have not been well elucidated. We have previously shown that the myelosuppressive TGF-β pathway is constitutively activated in MDS progenitors. Because there is conflicting data about upregulation of extracellular TGF-β levels in MDS, we wanted to determine the molecular basis of TGF-β pathway overactivation and consequent hematopoietic suppression in this disease.

View Article and Find Full Text PDF

Glioma-initiating cells (GICs), also called glioma stem cells, are responsible for tumor initiation, relapse, and therapeutic resistance. Here, we show that TGF-β inhibitors, currently under clinical development, target the GIC compartment in human glioblastoma (GBM) patients. Using patient-derived specimens, we have determined the gene responses to TGF-β inhibition, which include inhibitors of DNA-binding protein (Id)-1 and -3 transcription factors.

View Article and Find Full Text PDF

Background: Transforming Growth Factor beta (TGF-beta) plays an important role in tumor invasion and metastasis. We set out to investigate the possible clinical utility of TGF-beta antagonists in a human metastatic basal-like breast cancer model. We examined the effects of two types of the TGF-beta pathway antagonists (1D11, a mouse monoclonal pan-TGF-beta neutralizing antibody and LY2109761, a chemical inhibitor of TGF-beta type I and II receptor kinases) on sublines of basal cell-like MDA-MB-231 human breast carcinoma cells that preferentially metastasize to lungs (4175TR, 4173) or bones (SCP2TR, SCP25TR, 2860TR, 3847TR).

View Article and Find Full Text PDF

Members of the transforming growth factor beta (TGF-beta) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-beta and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-beta and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-beta and BMP signaling.

View Article and Find Full Text PDF

Transforming growth factor beta (TGFbeta) plays an important role in cancer, but accurate measurement of circulating TGFbeta is complicated by the high TGFbeta content of platelets which can release TGFbeta ex vivo. We evaluated the use of citrate-theophylline-adenosine-dipyridamole (CTAD) tubes to reduce preanalytical variation in TGFbeta measurements caused by ex vivo platelet activation. CTAD substantially reduced ex vivo platelet activation relative to traditional plasma collections in normal donors, which correlated with a decrease in measured TGFbeta levels.

View Article and Find Full Text PDF

Background: Tumor angiogenesis is a highly regulated process involving intercellular communication as well as the interactions of multiple downstream signal transduction pathways. Disrupting one or even a few angiogenesis pathways is often insufficient to achieve sustained therapeutic benefits due to the complexity of angiogenesis. Targeting multiple angiogenic pathways has been increasingly recognized as a viable strategy.

View Article and Find Full Text PDF

Transforming growth factor beta (TGFbeta) plays a key role in maintaining tissue homeostasis by inducing cell cycle arrest, differentiation and apoptosis, and ensuring genomic integrity. Furthermore, TGFbeta orchestrates the response to tissue injury and mediates repair by inducing epithelial to mesenchymal transition and by stimulating cell motility and invasiveness. Although loss of the homeostatic activity of TGFbeta occurs early on in tumor development, many advanced cancers have coopted the tissue repair function to enhance their metastatic phenotype.

View Article and Find Full Text PDF

In our continuing effort to expand the SAR of the quinoline domain of dihydropyrrolopyrazole series, we have discovered compound 15d, which demonstrated the antitumor efficacy with oral bioavailability. This effort also demonstrated that the PK/PD in vivo target inhibition paradigm is an effective approach to assess potential for antitumor efficacy. The dihydropyrrolopyrazole inhibitor 15d (LY2109761) is representative of a novel series of antitumor agents.

View Article and Find Full Text PDF

We measured transforming growth factor (TGF)-beta-dependent biomarkers in plasma and in peripheral blood mononuclear cells (PBMCs) to identify suitable pharmacodynamic markers for future clinical trials with TGF-beta inhibitors. Forty-nine patients with bone metastasis were enrolled in the study, including patients with breast (n=23) and prostate cancer (n=15). Plasma TGF-beta1 levels were elevated in more than half of the cancer patients (geometric mean 2.

View Article and Find Full Text PDF

To determine cancer pathway activities in nine types of primary tumors and NCI60 cell lines, we applied an in silica approach by examining gene signatures reflective of consequent pathway activation using gene expression data. Supervised learning approaches predicted that the Ras pathway is active in approximately 70% of lung adenocarcinomas but inactive in most squamous cell carcinomas, pulmonary carcinoids, and small cell lung carcinomas. In contrast, the TGF-beta, TNF-alpha, Src, Myc, E2F3, and beta-catenin pathways are inactive in lung adenocarcinomas.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF), a critical regulator in angiogenesis, exerts its angiogenic effect via binding to its receptor, VEGF receptor-2 tyrosine kinase (VEGFR2) or kinase insert domain-containing receptor (Kdr), on the surface of endothelial cells. Kdr-mediated signaling plays an important role in the proliferation, migration, differentiation, and survival of endothelial cells. Therefore, the inhibition of this signaling pathway represents a promising therapeutic approach for the discovery of novel anticancer agents by destabilizing the progression of solid tumors via abrogating tumor-induced angiogenesis.

View Article and Find Full Text PDF

Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion.

View Article and Find Full Text PDF

Novel dihydropyrrolopyrazole-substituted benzimidazoles were synthesized and evaluated in vitro as inhibitors of transforming growth factor-beta type I receptor (TGF-beta RI), TGF-beta RII, and mixed lineage kinase-7 (MLK-7). These compounds were found to be potent TGF-beta RI inhibitors and selective versus TGF-beta RII and MLK-7 kinases. Benzimidazole derivative 8b was active in an in vivo target (TGF-beta RI) inhibition assay.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta) signaling pathways regulate a wide variety of cellular processes including cell proliferation, differentiation, extracellular matrix deposition, development, and apoptosis. TGF-beta type-I receptor (TbetaRI) is the major receptor that triggers several signaling events by activating downstream targets such as the Smad proteins. The intracellular kinase domain of TbetaRI is essential for its function.

View Article and Find Full Text PDF

The transforming growth factor-beta (TGF-beta) superfamily of ligands has a pivotal role in the regulation of a wide variety of physiological processes from development to pathogenesis. Since the discovery of the prototypic member, TGF-beta, almost 20 years ago, there have been tremendous advances in our understanding of the complex biology of this superfamily. Deregulation of TGF-beta has been implicated in the pathogenesis of a variety of diseases, including cancer and fibrosis.

View Article and Find Full Text PDF

The pathological activation of the transforming growth factor beta (TGFbeta) pathway plays a critical role in the progression of fibrotic diseases and also enhances tumor invasiveness and metastasis. Due to its central role in TGFbeta signaling, the TGFbeta type I receptor (TbetaRI) is emerging as an exciting target for blockade of the TGFbeta pathway. In this review we will discuss how three independent drug discovery strategies, ie, target-hopping, high-throughput screening and virtual screening, have converged in the identification of inhibitors of TalphaRI kinase.

View Article and Find Full Text PDF

A novel series of 7-amino 4-(2-pyridin-2-yl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)-quinolines was synthesized and their TbetaR-1 inhibitory, p38 MAPK inhibitory, and TbetaR-1-dependent cellular activity were evaluated. Compound 5a was found to be a highly potent in the enzyme assay and TbetaR-1-dependent cellular assays. In addition, dimer (4g), with a urea linker, shows a similar enzyme and cellular activity despite a bulky substitution.

View Article and Find Full Text PDF

We have expanded our previously reported series of pyrazole-based inhibitors of the TGF-beta type I receptor kinase domain (TbetaR-I) to now include new 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole analogues. Limited examination of the SAR of this new series in both enzyme and cell based in vitro assays has revealed selectivity differences with respect to p38 MAP kinase (p38 MAPK) depending on the nature of the 'warhead' group on the dihydropyrrolopyrazole ring. As with our original pyrazole series, phenyl substituents tended to show greater selectivity against p38 MAPK than those comprised of the quinoline-4-yl moiety.

View Article and Find Full Text PDF

Pyrazole-based inhibitors of the transforming growth factor-beta type I receptor kinase domain (TbetaR-I) are described. Examination of the SAR in both enzyme- and cell-based in vitro assays resulted in the emergence of two subseries featuring differing selectivity versus p38 MAP kinase. A common binding mode at the active site has been established by successful cocrystallization and X-ray analysis of potent inhibitors with the TbetaR-I receptor kinase domain.

View Article and Find Full Text PDF