Publications by authors named "Jonathan M Monk"

Unlabelled: Thousands of complete genome sequences for strains of a species that are now available enable the advancement of pangenome analytics to a new level of sophistication. We collected 2,377 publicly available complete genomes of for detailed pangenome analysis. The core genome and accessory genomes consisted of 2,398 and 5,182 genes, respectively.

View Article and Find Full Text PDF

Classical metabolomic and new metabolic network methods were used to study the developmental features of autism spectrum disorder (ASD) in newborns (n = 205) and 5-year-old children (n = 53). Eighty percent of the metabolic impact in ASD was caused by 14 shared biochemical pathways that led to decreased anti-inflammatory and antioxidant defenses, and to increased physiologic stress molecules like lactate, glycerol, cholesterol, and ceramides. CIRCOS plots and a new metabolic network parameter, , revealed differences in both the kind and degree of network connectivity.

View Article and Find Full Text PDF
Article Synopsis
  • KpSC is a significant cause of hospital infections worldwide, showing high antimicrobial resistance, driving research into its virulence and metabolic processes for new treatments.
  • Researchers created KpSC pan v2, an advanced metabolic model using data from 507 KpSC isolates, which includes 3550 reactions and can simulate growth on 360 substrates, showing improved accuracy over previous models.
  • This model is available for free online, providing a valuable resource for researchers to study metabolism and develop targeted therapies.
View Article and Find Full Text PDF

Surveillance programs for managing antimicrobial resistance (AMR) have yielded thousands of genomes suited for data-driven mechanism discovery. We present a workflow integrating pangenomics, gene annotation, and machine learning to identify AMR genes at scale. When applied to 12 species, 27,155 genomes, and 69 drugs, we 1) find AMR gene transfer mostly confined within related species, with 925 genes in multiple species but just eight in multiple phylogenetic classes, 2) demonstrate that discovery-oriented support vector machines outperform contemporary methods at recovering known AMR genes, recovering 263 genes compared to 145 by Pyseer, and 3) identify 142 AMR gene candidates.

View Article and Find Full Text PDF

Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale.

View Article and Find Full Text PDF
Article Synopsis
  • Replication stress from a deficiency leads to mitochondrial dysfunction and metabolic stress, causing significant changes in metabolites.
  • Supplementation with NAD and its precursor, nicotinamide riboside (NR), can restore autophagy and improve mitochondrial morphology in mouse embryonic fibroblasts (MEFs).
  • However, while NR supplementation helps MEFs, it does not protect nematodes from oxidative stress caused by the deficiency, indicating variability in intervention effectiveness depending on the organism.
View Article and Find Full Text PDF

Comprehensive whole genome sequencing (WGS) with hybrid assembly of a multi-drug resistant (MDR) (CA) isolate causing cerebral abscess was performed using Illumina paired end and Oxford Nanopore long read technologies. The innovative technologies utilized here enabled us to resolve fragmented assemblies, and implement comprehensive and detailed genomic analyses involved in antifungal resistance of Functionally important genes (MDR1, CDR2 and SQN2) involved in antifungal resistance were identified and a phylogenetic analysis of the clinical isolate was performed. Additionally, our clinical isolate was found to share 4 single nucleotide polymorphisms with two other sequenced strains of MDR (381 and 386) including translation elongation factor EF1α and EF3, ATPase activity associated proteins, and the lysine tRNA ligase.

View Article and Find Full Text PDF

Background: Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium used to treat various gastrointestinal diseases. EcN is increasingly being used as a chassis for the engineering of advanced microbiome therapeutics. To aid in future engineering efforts, our aim was to construct an updated metabolic model of EcN with extended secondary metabolite representation.

View Article and Find Full Text PDF

First started in 1931, the Continuous Plankton Recorder (CPR) Survey is the longest-running and most geographically extensive marine plankton sampling program in the world. This pilot study investigates the feasibility of biomonitoring the spatiotemporal trends of marine pollution using archived CPR samples from the North Pacific. We selected specimens collected from three different locations (British Columbia Shelf, Northern Gulf of Alaska, and Aleutian Shelf) in the North Pacific between 2002 and 2020.

View Article and Find Full Text PDF

Genotype-fitness maps of evolution have been well characterized for biological components, such as RNA and proteins, but remain less clear for systems-level properties, such as those of metabolic and transcriptional regulatory networks. Here, we take multi-omics measurements of 6 different E. coli strains throughout adaptive laboratory evolution (ALE) to maximal growth fitness.

View Article and Find Full Text PDF

Background: The chemical composition of human milk has long-lasting effects on brain development. We examined the prognostic value of the human milk metabolome and exposome in children with the risk of neurodevelopmental delay (NDD).

Methods: This retrospective cohort study included 82 mother-infant pairs (40 male and 42 female infants).

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) is a common bacterial pathogen that frequently colonizes healthy individuals, with potential to cause invasive infection. In Denmark, to keep the prevalence low, MRSA carriers are recommended to undergo decolonization treatments, but achieving decolonization is challenging. Knowledge about the factors contributing to decolonization is scarce.

View Article and Find Full Text PDF

Bottom-up approaches to systems biology rely on constructing a mechanistic basis for the biochemical and genetic processes that underlie cellular functions. Genome-scale network reconstructions of metabolism are built from all known metabolic reactions and metabolic genes in a target organism. A network reconstruction can be converted into a mathematical format and thus lend itself to mathematical analysis.

View Article and Find Full Text PDF

Metabolomics has emerged as a powerful new tool in precision medicine. No studies have yet been published on the metabolomic changes in cerebrospinal fluid (CSF) produced by acute endurance exercise. CSF and plasma were collected from 19 young active adults (13 males and 6 females) before and 60 min after a 90-min monitored outdoor run.

View Article and Find Full Text PDF

In silico genome mining provides easy access to secondary metabolite biosynthetic gene clusters (BGCs) encoding the biosynthesis of many bioactive compounds, which are the basis for many important drugs used in human medicine. However, the association between BGCs and other functions encoded in the genomes of producers have remained elusive. Here, we present a systems biology workflow that integrates genome mining with a detailed pangenome analysis for detecting genes associated with a particular BGC.

View Article and Find Full Text PDF

The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood.

View Article and Find Full Text PDF

Combatting Clostridioides difficile infections, a dominant cause of hospital-associated infections with incidence and resulting deaths increasing worldwide, is complicated by the frequent emergence of new virulent strains. Here, we employ whole-genome sequencing, high-throughput phenotypic screenings, and genome-scale models of metabolism to evaluate the genetic diversity of 451 strains of C. difficile.

View Article and Find Full Text PDF

Mathematical models have many applications in infectious diseases: epidemiologists use them to forecast outbreaks and design containment strategies; systems biologists use them to study complex processes sustaining pathogens, from the metabolic networks empowering microbial cells to ecological networks in the microbiome that protects its host. Here, we (1) review important models relevant to infectious diseases, (2) draw parallels among models ranging widely in scale. We end by discussing a minimal set of information for a model to promote its use by others and to enable predictions that help us better fight pathogens and the diseases they cause.

View Article and Find Full Text PDF

The species complex (KpSC) is a set of seven taxa that are found in a variety of niches and are an important cause of opportunistic health care-associated infections in humans. Because of increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa.

View Article and Find Full Text PDF

Background: With the exponential growth of publicly available genome sequences, pangenome analyses have provided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. We present here several methods for "comparative pangenomics" that can be used to contextualize multi-pangenome scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, sequence variants, and positions within variants.

View Article and Find Full Text PDF

Understating how antibiotic tolerance impacts subsequent resistance development in the clinical setting is important to identifying effective therapeutic interventions and prevention measures. This study describes a patient case of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia which rapidly developed resistance to three primary MRSA therapies and identifies genetic and metabolic changes selected in vivo that are associated with rapid resistance evolution. Index blood cultures displayed susceptibility to all (non-beta-lactam) antibiotics with the exception of trimethoprim/ sulfamethoxazole.

View Article and Find Full Text PDF
Article Synopsis
  • - Mesoplasma florum is a rapidly growing organism used for studying genome designs, with 30% of its protein-coding functions reconstructed into a metabolic network.
  • - A functional genome-scale model called iJL208 was developed by simplifying growth conditions and integrating various datasets, which helped validate the model through experimental data.
  • - iJL208 aids in identifying essential genes and comparing them to a minimal cell, providing insights into what constitutes a minimal genome and paving the way for advanced genome engineering.
View Article and Find Full Text PDF

Since 2012, studies in mice, rats, and humans have suggested that abnormalities in purinergic signaling may be a final common pathway for many genetic and environmental causes of autism spectrum disorder (ASD). The current study in mice was conducted to characterize the bioenergetic, metabolomic, breathomic, and behavioral features of acute hyperpurinergia triggered by systemic injection of the purinergic agonist and danger signal, extracellular ATP (eATP). Responses were studied in C57BL/6J mice in the maternal immune activation (MIA) model and controls.

View Article and Find Full Text PDF

Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing.

View Article and Find Full Text PDF