The structure of the sodium-benzylhydantoin transport protein Mhp1 from Microbacterium liquefaciens comprises a five-helix inverted repeat, which is widespread among secondary transporters. Here, we report the crystal structure of an inward-facing conformation of Mhp1 at 3.8 angstroms resolution, complementing its previously described structures in outward-facing and occluded states.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2008
BCL6 is a transcriptional repressor that is overexpressed in diffuse large B-cell lymphoma and follicular lymphoma. The N-terminal POZ domain of BCL6 interacts with transcriptional corepressors and targeting these associations is a promising therapeutic strategy. Previous structural studies of the BCL6 POZ domain have used a mutant form because of the low solubility of the wild-type recombinant protein.
View Article and Find Full Text PDFThe preparation of purified, detergent-solubilized membrane proteins in a monodisperse and stable form is usually a prerequisite for investigation not only of their function but also for structural studies by X-ray crystallography and other approaches. Typically, it is necessary to explore a wide range of conditions, including detergent type, buffer pH, and the presence of additives such as glycerol, in order to identify those optimal for stability. Given the difficulty of expressing and purifying membrane proteins in large amounts, such explorations must ideally be performed on as small a scale as practicable.
View Article and Find Full Text PDFThe nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens.
View Article and Find Full Text PDFThe four-way (Holliday) DNA junction is the central intermediate in homologous recombination, a ubiquitous process that is important in DNA repair and generation of genetic diversity. The penultimate stage of recombination requires resolution of the DNA junction into nicked-duplex species by the action of a junction-resolving enzyme, examples of which have been identified in a wide variety of organisms. These enzymes are nucleases that are highly selective for the structure of branched DNA.
View Article and Find Full Text PDFThe LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) scavenger receptor regulates vascular responses to oxidized-low-density-lipoprotein particles implicated in atherosclerotic plaque formation. LOX-1 is closely related to C-type lectins, but the mechanism of ligand recognition is not known. Here we show that human LOX-1 recognizes a key cellular phospholipid, PS (phosphatidylserine), in a Ca2+-dependent manner, both in vitro and in cultured cells.
View Article and Find Full Text PDFType III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C).
View Article and Find Full Text PDFThe junction-resolving enzyme endonuclease I is selective for the structure of the DNA four-way (Holliday) junction. The enzyme binds to a four-way junction in two possible orientations, with a 4:1 ratio, opening the DNA structure at the centre and changing the global structure into a 90 degrees cross of approximately coaxial helices. The nuclease cleaves the continuous strands of the junction in each orientation.
View Article and Find Full Text PDFT7 endonuclease I is a nuclease that is selective for the structure of the four-way DNA junction. The active site is similar to those of a number of restriction enzymes. We have solved the crystal structure of endonuclease I with a wild-type active site.
View Article and Find Full Text PDF