Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue.
View Article and Find Full Text PDFAnalysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16C1QA/B/C) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19.
View Article and Find Full Text PDFPurpose: Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood.
Methods: Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering.
Purpose: The high infection rate of SARS-CoV-2 necessitates the need for multiple studies identifying the molecular mechanisms that facilitate the viral entry and propagation. Currently the potential extra-respiratory transmission routes of SARS-CoV-2 remain unclear.
Methods: Using single-cell RNA Seq and ATAC-Seq datasets and immunohistochemical analysis, we investigated SARS-CoV-2 tropism in the embryonic, fetal and adult human ocular surface.
O1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J.
View Article and Find Full Text PDFBackground: Medulloblastomas, the most frequent malignant brain tumours affecting children, comprise at least 4 distinct clinicogenetic subgroups. Aberrant sonic hedgehog (SHH) signalling is observed in approximately 25% of tumours and defines one subgroup. Although alterations in SHH pathway genes (e.
View Article and Find Full Text PDFThe aim of this study was to investigate the differential antineoplastic effects of butyrate in cells with and without a functional mismatch repair and to determine the molecular mechanisms underlying these effects. SW48 colon cancer cells in which the MLH1 gene is silenced by promoter hypermethylation and demethylated SW48 cells in which the MLH1 gene is reexpressed were treated with butyrate (0-5mM) for 8 days and the effects on cell number, MLH1 gene promoter methylation, and expression of two cell cycle regulatory genes, CDK4 and GADD45A, were assessed. Butyrate suppressed viable cell number (P < 0.
View Article and Find Full Text PDFEpidemiological evidence suggests that a high intake of resistant starch and NSP protects against colo-rectal cancer. The mechanisms underlying this protection are thought to be mediated by the short-chain fatty acid butyrate, which is present in the colonic lumen in millimolar concentrations as a result of bacterial fermentation of carbohydrates that have resisted digestion in the small intestine. In vitro studies have shown that butyrate displays a host of chemo-preventative properties including increased apoptosis, reduced proliferation, down regulation of angiogenesis, enhanced immunosurveillance and anti-inflammatory effects in colo-rectal cancer cell lines.
View Article and Find Full Text PDF