Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice.
View Article and Find Full Text PDFPhenotypic heterogeneity is commonly observed in diseased tissue, specifically in tumors. Multimodal imaging technologies can reveal tissue heterogeneity noninvasively in vivo, enabling imaging-based profiling of receptors, metabolism, morphology, or function on a macroscopic scale. In contrast, in vitro multiomics, immunohistochemistry, or histology techniques accurately characterize these heterogeneities in the cellular and subcellular scales in a more comprehensive but ex vivo manner.
View Article and Find Full Text PDF