Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A(∗)0201) complexed with human T cell lymphotropic virus type 111-19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold.
View Article and Find Full Text PDFPreviously, we have described the use of phage display to generate high affinity disulfide bond-linked T cell receptors (TCRs). The affinities of the mutant TCRs were analysed after refolding of separately expressed alpha and beta chains from Escherichia coli inclusion bodies. This approach is only suitable for the analysis of small numbers of TCR variants.
View Article and Find Full Text PDFActivation of cytotoxic T cells is initiated by engagement of the T-cell receptor (TCR) with peptide-major histocompatibility class I complexes (pMHCI). The CD8 co-receptor also binds to pMHCI, but at a distinct site, and allows the potential for tripartite TCR/pMHCI/CD8 interactions, which can increase T cell antigen sensitivity. There has been a substantial interest in the effect of the pMHCI/CD8 interaction upon TCR/pMHCI engagement, and several conflicting studies have examined this event, using the soluble extracellular domains of CD8 and the TCR, by surface plasmon resonance.
View Article and Find Full Text PDFNaturally selected T-cell receptors (TCRs) are characterised by low binding affinities, typically in the range 1-100 microM. Crystal structures of syngeneic TCRs bound to peptide major histocompatibility complex (pMHC) antigens exhibit a conserved mode of binding characterised by a distinct diagonal binding geometry, with poor shape complementarity (SC) between receptor and ligand. Here, we report the structures of three in vitro affinity enhanced TCRs that recognise the pMHC tumour epitope NY-ESO(157-165) (SLLMWITQC).
View Article and Find Full Text PDFT cell recognition is initiated by the binding of TCRs to peptide-MHCs (pMHCs), the interaction being characterized by weak affinity and fast kinetics. Previously, only 16 natural TCR/pMHC interactions have been measured by surface plasmon resonance (SPR). Of these, 5 are murine class I, 5 are murine class II, and 6 are human class I-restricted responses.
View Article and Find Full Text PDFCD8(+) cytotoxic T lymphocytes (CTL) are key determinants of immunity to intracellular pathogens and neoplastic cells. Recognition of specific antigens in the form of peptide-MHC class I complexes (pMHCI) presented on the target cell surface is mediated by T cell receptor (TCR) engagement. The CD8 coreceptor binds to invariant domains of pMHCI and facilitates antigen recognition.
View Article and Find Full Text PDFThe interaction between T cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) antigens can lead to varying degrees of agonism (T cell activation), or antagonism. The P14 TCR recognises the lymphocytic choriomeningitis virus (LCMV)-derived peptide, gp33 residues 33-41 (KAVYNFATC), presented in the context of H-2D(b). The cellular responses to various related H-2D(b) peptide ligands are very well characterised, and P14 TCR-transgenic mice have been used extensively in models of virus infection, autoimmunity and tumour rejection.
View Article and Find Full Text PDFHLA-A*6801 exhibits several unusual features. First, it is known to bind weakly to CD8 due to the presence of an A245V substitution in the alpha3 domain. Second, it is able to accommodate unusually long peptides as a result of peptide 'kinking' in the binding groove.
View Article and Find Full Text PDFHuman CD8 is a T cell coreceptor, which binds to pHLA I and plays a pivotal role in the activation of cytotoxic T lymphocytes. Soluble recombinant CD8 alphaalpha has been shown to antagonize T cell activation, both in vitro and in vivo. However, because of a very low affinity for pHLA I, high concentrations of soluble CD8 alphaalpha are required for efficient inhibition.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2005
The class I CD8 positive T-cell response is involved in a number of conditions in which artificial down-regulation and control would be therapeutically beneficial. Such conditions include a number of autoimmune diseases and graft rejection in transplant patients. Although the CD8 T-cell response is dominated by the TCR-pMHC interaction, activation of T cells is in most cases also dependent on a number of associated signalling molecules.
View Article and Find Full Text PDFHLA-A*2402 is the most commonly expressed HLA allele in oriental populations. It is also widely expressed in the Caucasian population, making it one of, if not the most abundant HLA I types. In order to study its structure in terms of overall fold and peptide presentation, a soluble form of this HLA I (alpha1, alpha2, alpha3 and beta(2)m domains) has been expressed, refolded and crystallized in complex with a cancer-related telomerase peptide (VYGFVRACL), and its structure has been solved to 2.
View Article and Find Full Text PDFAnalogue peptides with enhanced binding affinity to major histocompatibility class (MHC) I molecules are currently being used in cancer patients to elicit stronger T cell responses. However, it remains unclear as to how alterations of anchor residues may affect T cell receptor (TCR) recognition. We correlate functional, thermodynamic, and structural parameters of TCR-peptide-MHC binding and demonstrate the effect of anchor residue modifications of the human histocompatibility leukocyte antigens (HLA)-A2 tumor epitope NY-ESO-1(157-165)-SLLMWITQC on TCR recognition.
View Article and Find Full Text PDFPeptides derived from almost all proteins, including disease-associated proteins, can be presented on the cell surface as peptide-human leukocyte antigen (pHLA) complexes. T cells specifically recognize pHLA with their clonally rearranged T-cell receptors (TCRs), whose natural affinities are limited to approximately 1-100 muM. Here we describe the display of ten different human TCRs on the surface of bacteriophage, stabilized by a nonnative interchain disulfide bond.
View Article and Find Full Text PDFThe use of recombinant T cell receptors (TCRs) to target therapeutic interventions has been hindered by the naturally low affinity of TCR interactions with peptide major histocompatibility complex ligands. Here, we use multimeric forms of soluble heterodimeric alphabeta TCRs for specific detection of target cells pulsed with cognate peptide, discrimination of quantitative changes in antigen display at the cell surface, identification of virus-infected cells, inhibition of antigen-specific cytotoxic T lymphocyte activation, and identification of cross-reactive peptides. Notably, the A6 TCR specific for the immunodominant HLA A2-restricted human T cell leukemia virus type 1 Tax(11-19) epitope bound to HLA A2-HuD(87-95) (K(D) 120 microm by surface plasmon resonance), an epitope implicated as a causal antigen in the paraneoplastic neurological degenerative disorder anti-Hu syndrome.
View Article and Find Full Text PDFAutoimmune diseases are often mediated by self-reactive T cells, which must be activated to cause immunopathology. One mechanism, known as molecular mimicry, proposes that self-reactive T cells may be activated by pathogens expressing crossreactive ligands. Here we have developed a model to investigate how the affinity of the T-cell receptor (TCR) for the activating agent influences autoimmunity.
View Article and Find Full Text PDFAntibody and T-cell receptors (TCRs) are the primary recognition molecules of the adaptive immune system. Antibodies have been extensively characterized and are being developed for a large number of therapeutic applications. This has been possible because of the ability to manufacture stable, soluble, monoclonal antibodies which retain the antigen specificity of B cells.
View Article and Find Full Text PDFT lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively.
View Article and Find Full Text PDFWe identified a novel HLA A*6801-restricted HIV-1 Tat-derived cytotoxic T lymphocyte (CTL) epitope using an adapted enzyme-linked immunospot assay that allows the rapid ex vivo identification of CTL epitopes together with their associated HLA Class I restriction elements. The optimal 11 amino acid residue Tat epitope efficiently stabilized the refolding of monomeric peptide-HLA A6801 complexes in vitro and fluorochrome-labelled, tetrameric peptide-HLA A6801 complexes stained CD8 T cells specific for this epitope directly ex vivo.
View Article and Find Full Text PDFThe CD8 coreceptor of cytotoxic T lymphocytes binds to a conserved region of major histocompatibility complex class I molecules during recognition of peptide-major histocompatibility complex (MHC) class I antigens on the surface of target cells. This event is central to the activation of cytotoxic T lymphocyte (CTL) effector functions. The contribution of the MHC complex class I light chain, beta(2)-microglobulin, to CD8alphaalpha binding is relatively small and is mediated mainly through the lysine residue at position 58.
View Article and Find Full Text PDF