Publications by authors named "Jonathan Locke"

Article Synopsis
  • The study investigates how rare non-coding genetic variations affect complex traits, specifically focusing on human height by analyzing data from over 333,100 individuals across three large datasets.
  • Researchers found 29 significant rare variants linked to height, with impacts ranging from a decrease of 7 cm to an increase of 4.7 cm, after considering previously known variants.
  • The team also identified specific non-coding variants near key genes associated with height, demonstrating a new method for understanding the effects of rare variants in regulatory regions using whole-genome sequencing.
View Article and Find Full Text PDF

Background: Vasomotor symptoms (VMS) can often significantly impact women's quality of life at menopause. In vivo studies have shown that increased neurokinin B (NKB) / neurokinin 3 receptor (NK3R) signalling contributes to VMS, with previous genetic studies implicating the TACR3 gene locus that encodes NK3R. Large-scale genomic analyses offer the possibility of biological insights but few such studies have collected data on VMS, while proxy phenotypes such as hormone replacement therapy (HRT) use are likely to be affected by changes in clinical practice.

View Article and Find Full Text PDF
Article Synopsis
  • Enteroviral infections may play a significant role in the development of type 1 diabetes and autoimmune responses, potentially linked to genetic factors like the IFIH1 gene.
  • Increased detection of enterovirus RNA was found in the cellular compartment of blood, particularly in children with autoimmune characteristics, suggesting a stronger association with enteroviral presence.
  • Carriers of a specific allele of the IFIH1 gene were more likely to test positive for enterovirus RNA, but no link was found between this genetic variant and the presence of enteroviral proteins in the pancreatic islets of type 1 diabetes donors.
View Article and Find Full Text PDF

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse β-cells, its precise role in human β-cell development and function is unknown. In this study, we show that lack of MANF in humans results in diabetes due to increased ER stress, leading to impaired β-cell function.

View Article and Find Full Text PDF

Lyme disease (LD) is an increasingly prevalent, climate change-accelerated, vector-borne infectious disease with significant morbidity and cost in a proportion of patients who experience ongoing symptoms after antibiotic treatment, a condition known as post-treatment Lyme disease syndrome (PTLDS). Spirochetal bacteria of species are the causative agents of LD. These obligate parasites have evolved sophisticated immune evasion mechanisms, including the ability to defeat the innate immune system's complement cascade.

View Article and Find Full Text PDF

Objective: Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies.

Research Design And Methods: In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome.

View Article and Find Full Text PDF

There is wide variation in the age at diagnosis of diabetes in individuals with maturity-onset diabetes of the young (MODY) due to a mutation in the gene. We hypothesized that common variants at the locus (rs1169288 [I27L], rs1800574 [A98V]), which are associated with type 2 diabetes susceptibility, may modify age at diabetes diagnosis in individuals with HNF1A-MODY. Meta-analysis of two independent cohorts, comprising 781 individuals with HNF1A-MODY, found no significant associations between genotype and age at diagnosis.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits.

View Article and Find Full Text PDF

Four non-coding GWAS variants in or near the ADIPOQ gene (rs17300539, rs17366653, rs3821799 and rs56354395) together explain 4% of the variation in circulating adiponectin. The functional basis for this is unknown. We tested the effect of these variants on ADIPOQ transcription, splicing and stability respectively in adipose tissue samples from participants recruited by rs17366653 genotype.

View Article and Find Full Text PDF

Aims/hypothesis: Ageing can lead to reduced insulin sensitivity and loss of pancreatic beta cell function, predisposing individuals to the development of diabetes. The aim of this study was to assess the contribution of microRNAs (miRNAs) to age-associated beta cell dysfunction.

Methods: The global mRNA and miRNA profiles of 3- and 12-month-old rat islets were collected by microarray.

View Article and Find Full Text PDF

Aims/hypothesis: Intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene are associated with risk of developing type 2 diabetes. A strong correlation between risk alleles and lower levels of the non-coding RNA, CDKAL1-v1, has recently been reported in whole blood extracted from Japanese individuals. We sought to replicate this association in two independent cohorts: one using whole blood from white UK-resident individuals, and one using a collection of human pancreatic islets, a more relevant tissue type to study with respect to the aetiology of diabetes.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified variation at >65 genomic loci associated with susceptibility to type 2 diabetes, but little progress has been made in elucidating the molecular mechanisms behind most of these associations. Using samples heterozygous for transcribed single nucleotide polymorphisms (SNPs), allelic expression profiling is a powerful technique for identifying cis-regulatory variants controlling gene expression. In this study, exonic SNPs, suitable for measuring mature mRNA levels and in high linkage disequilibrium with 65 lead type 2 diabetes GWAS SNPs, were identified and allelic expression determined by real-time PCR using RNA and DNA isolated from islets of 36 white nondiabetic donors.

View Article and Find Full Text PDF

Background: Many genetic variants have been associated with susceptibility to complex traits by genome wide association studies (GWAS), but for most, causal genes and mechanisms of action have yet to be elucidated. Using bioinformatics, we identified index and proxy variants associated with autoimmune disease susceptibility, with the potential to affect splicing of candidate genes. PCR and sequence analysis of whole blood RNA samples from population controls was then carried out for the 8 most promising variants to determine the effect of genetic variation on splicing of target genes.

View Article and Find Full Text PDF

Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell apoptosis, two causes of islet dysfunction and progression to type 2 diabetes. Studies have shown that single nucleotide polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression.

View Article and Find Full Text PDF

Recent studies in mouse, involving the β-cell-specific deletion of Dicer1, have highlighted the crucial role of miRNAs (microRNAs) in regulating insulin secretion and consequently Type 2 diabetes. Identifying the individual miRNAs involved in human islet dysfunction may be of diagnostic and therapeutic interest. miRNA expression profiling of human islets isolated from donors with and without Type 2 diabetes may represent one of the first steps in the discovery of these specific miRNAs.

View Article and Find Full Text PDF

Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line.

View Article and Find Full Text PDF

The analysis of cetacean vocalizations is considered using Fourier-based techniques that employ chirp functions in their decomposition. In particular, the paper considers a short-time methods based on the fractional Fourier transform for detecting frequency modulated narrow-band signals, such as dolphin whistles, and compares this to the classical short-time Fourier methods. The fractional Fourier technique explored computes transforms associated with a range of chirp rates and automatically selects the rate for the final analysis.

View Article and Find Full Text PDF

Context And Objective: Recessive mutations in the hydroxyacyl-CoA dehydrogenase (HADH) gene encoding the enzyme 3-hydroxyacyl-CoA dehydrogenase are a rare cause of diazoxide-responsive hyperinsulinemic hypoglycemia (HH) with just five probands reported to date. HADH deficiency in the first three identified patients was associated with detectable urinary 3-hydroxyglutarate and raised plasma 3-hydroxybutyryl-carnitine levels, but two recent cases did not have abnormal urine organic acids or acylcarnitines.

Research Design And Methods: We studied 115 patients with diazoxide-responsive HH in whom the common genetic causes of HH had been excluded.

View Article and Find Full Text PDF

Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes.

View Article and Find Full Text PDF

Objective: Mutations in the alternatively spliced HNF4A gene cause maturity-onset diabetes of the young (MODY). We characterized the spatial and developmental expression patterns of HNF4A transcripts in human tissues and investigated their role as potential moderators of the MODY phenotype.

Research Design And Methods: We measured the expression of HNF4A isoforms in human adult tissues and gestationally staged fetal pancreas by isoform-specific real-time PCR.

View Article and Find Full Text PDF

Objective: Mutations in the human HNF4A gene encoding the hepatocyte nuclear factor (HNF)-4alpha are known to cause maturity-onset diabetes of the young (MODY), which is characterized by autosomal-dominant inheritance and impaired glucose-stimulated insulin secretion from pancreatic beta-cells. HNF-4alpha has a key role in regulating the multiple transcriptional factor networks in the islet. Recently, heterozygous mutations in the HNF4A gene were reported to cause transient hyperinsulinemic hypoglycemia associated with macrosomia.

View Article and Find Full Text PDF

In the eukaryotic cell a number of molecular mechanisms exist to regulate the nature and quantity of transcripts intended for translation. For monogenic diabetes an understanding of these processes is aiding scientists and clinicians in studying and managing this disease. Knowledge of RNA processing and mRNA surveillance pathways is helping to explain disease mechanisms, form genotype-phenotype relationships, and identifying new regions within genes to screen for mutations.

View Article and Find Full Text PDF