Time-integrated radiography using MeV Bremsstrahlung X-ray sources is the norm for imaging during system-level testing of components and structures under dynamic condition. One source of error in the analysis of the time-integrated radiography data sets stems from motion blur which smears out sharp interfaces to a greater degree with longer exposure times, which become necessary to provide sufficient signal-to-noise with low X-ray penetration of objects of interest. To quantify motion blur, a 1D shock wave through PMMA was investigated experimentally at The Dynamic Compression Sector at The Advanced Photon Source (DCS@APS) with tapered broadband and 25.
View Article and Find Full Text PDFGrain boundary velocity has been believed to be correlated to curvature, and this is an important relationship for modeling how polycrystalline materials coarsen during annealing. We determined the velocities and curvatures of approximately 52,000 grain boundaries in a nickel polycrystal using three-dimensional orientation maps measured by high-energy diffraction microscopy before and after annealing at 800°C. Unexpectedly, the grain boundary velocities and curvatures were uncorrelated.
View Article and Find Full Text PDFHydrogen embrittlement (HE) causes sudden, costly failures of metal components across a wide range of industries. Yet, despite over a century of research, the physical mechanisms of HE are too poorly understood to predict HE-induced failures with confidence. We use non-destructive, synchrotron-based techniques to investigate the relationship between the crystallographic character of grain boundaries and their susceptibility to hydrogen-assisted fracture in a nickel superalloy.
View Article and Find Full Text PDFHigh energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements.
View Article and Find Full Text PDF