Publications by authors named "Jonathan Lageard"

Background And Aims: Both plants and animals display considerable variation in their phe- notypic traits as they grow. This variation helps organisms to adapt to specific challenges at different stages of development. Masting, the variable and synchronized seed production across years by a population of plants, is a common reproductive strategy in perennial plants that can enhance reproductive efficiency through increasing pollination efficiency and decreasing seed predation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the relationship between tree maturation size and reproduction, finding that larger tree species tend to start reproducing at a smaller size than expected, challenging previous assumptions.
  • - Researchers analyzed seed production data from 486 tree species across different climates, revealing that maturation size increases with maximum size but not in a straightforward manner.
  • - The results indicate that this trend is particularly pronounced in colder climates, highlighting the importance of understanding maturation size to better predict how forests will respond to climate change and disturbances.
View Article and Find Full Text PDF
Article Synopsis
  • Masting is when trees produce a lot of seeds at different times, which helps them survive by confusing animals that eat seeds.
  • However, this can be bad for the animals that help trees spread their seeds because they rely on a steady food supply.
  • Researchers found that some trees avoid masting to keep their disperser animals happy, especially in different climates and depending on how much nutrients they need to grow.
View Article and Find Full Text PDF

Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production ("masting breakdown") which can increase seed predation and decrease pollination efficiency in trees.

View Article and Find Full Text PDF

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged.

View Article and Find Full Text PDF
Article Synopsis
  • Lack of data on tree seed production across different climates makes it hard to understand how seed availability affects forest regeneration and biodiversity.
  • A global analysis shows that seed abundance increases significantly (by 250 times) from cold-dry to warm-wet climates, mainly due to a hundredfold increase in seeds produced by the same size tree.
  • This dramatic rise in seed supply could be influenced by either evolutionary adaptations to intense species interactions or by the warm, moist climate's direct impact on tree fecundity, which may also affect food webs and species interactions, especially in wet tropical regions.
View Article and Find Full Text PDF

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community.

View Article and Find Full Text PDF

Climate change is altering patterns of seed production worldwide with consequences for population recruitment and migration potential. For the many species that regenerate through synchronized, quasiperiodic reproductive events termed masting, these changes include decreases in the synchrony and interannual variation in seed production. This breakdown in the occurrence of masting features harms reproduction by decreasing the efficiency of pollination and increasing seed predation.

View Article and Find Full Text PDF

Climate change is altering patterns of seed production worldwide [1-4], but the potential for evolutionary responses to these changes is poorly understood. Masting (synchronous, annually variable seed production by plant populations) is selectively beneficial through economies of scale that decrease the cost of reproduction per surviving offspring [5-7]. Masting is particularly widespread in temperate trees [8, 9] impacting food webs, macronutrient cycling, carbon storage, and human disease risk [10-12], so understanding its response to climate change is important.

View Article and Find Full Text PDF

Many plants benefit from synchronous year-to-year variation in seed production, called masting. Masting benefits plants because it increases the efficiency of pollination and satiates predators, which reduces seed loss. Here, using a 39-year-long dataset, we show that climate warming over recent decades has increased seed production of European beech but decreased the year-to-year variability of seed production and the reproductive synchrony among individuals.

View Article and Find Full Text PDF

Widespread forest dieback is a phenomenon of global concern that requires an improved understanding of the relationship between tree growth and climate to support conservation efforts. One priority for conservation is the Atlas cedar (), an endangered species exhibiting dieback throughout its North African range. In this study, we evaluate the long-term context for recent dieback and develop a projection of future growth by exploring the periodic variability of its growth through time.

View Article and Find Full Text PDF

Interannual variation in radial growth is influenced by a range of physiological processes, including variation in annual reproductive effort, although the importance of reproductive allocation has rarely been quantified. In this study, we use long stand-level records of annual seed production, radial growth (tree ring width) and meteorological conditions to analyse the relative importance of summer drought and reproductive effort in controlling the growth of Fagus sylvatica L., a typical masting species.

View Article and Find Full Text PDF

Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate.

View Article and Find Full Text PDF

Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech (Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology.

View Article and Find Full Text PDF

There is a shortage of archives of sulfur that can be used to investigate industrial orvolcanic pollution in terrestrial catchments, but the role of S as a nutrient, coupled with sparse published evidence, suggests that trees are promising targets. We focused on two conifer species (Picea abies (L.) Karst and Abies alba Miller) from an Alpine site in NE Italy.

View Article and Find Full Text PDF