Two of the most pressing questions in physics are the microscopic nature of the dark matter that comprises 84% of the mass in the Universe and the absence of a neutron electric dipole moment. These questions would be resolved by the existence of a hypothetical particle known as the quantum chromodynamics (QCD) axion. In this work, we probe the hypothesis that axions constitute dark matter, using the ABRACADABRA-10 cm experiment in a broadband configuration, with world-leading sensitivity.
View Article and Find Full Text PDFThe axion is a promising dark matter candidate, which was originally proposed to solve the strong-CP problem in particle physics. To date, the available parameter space for axion and axionlike particle dark matter is relatively unexplored, particularly at masses m_{a}≲1 μeV. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, 10^{-12}≲m_{a}≲10^{-6} eV.
View Article and Find Full Text PDF