Publications by authors named "Jonathan L Gordon"

Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species.

View Article and Find Full Text PDF

Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication.

View Article and Find Full Text PDF

Yeasts have been used for food and beverage fermentations for thousands of years. Today, numerous different strains are available for each specific fermentation process. However, the nature and extent of the phenotypic and genetic diversity and specific adaptations to industrial niches have only begun to be elucidated recently.

View Article and Find Full Text PDF

A novel algorithm harnesses phylogenetic information and facilitates a better understanding of the evolutionary divergence of gene regulation between species.

View Article and Find Full Text PDF

The disease, Heartwater, caused by the , represents a major problem for tropical livestock and wild ruminants. Up to now, no effective vaccine has been available due to a limited cross protection of vaccinal strains on field strains and a high genetic diversity of within geographical locations. To address this issue, we inferred the genetic diversity and population structure of 194 isolates circulating worldwide using Multilocus Sequence Typing based on , and .

View Article and Find Full Text PDF

Background: The identification of factors involved in the host range definition and evolution is a pivotal challenge in the goal to predict and prevent the emergence of plant bacterial disease. To trace the evolution and find molecular differences between three pathotypes of Xanthomonas citri pv. citri that may explain their distinctive host ranges, 42 strains of X.

View Article and Find Full Text PDF

Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.

View Article and Find Full Text PDF

Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae.

View Article and Find Full Text PDF

We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including data from genera Tetrapisispora, Kazachstania, Naumovozyma, and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent HML and HMR loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between MAT and HML.

View Article and Find Full Text PDF

The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species.

View Article and Find Full Text PDF

Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes.

View Article and Find Full Text PDF

Zygosaccharomyces rouxii strain ATCC 42981 has been reported to have two copies of several genes including HOG1 and SOD2, whereas the type strain of Z. rouxii (CBS 732) has only one. To investigate the structure of the ATCC 42981 genome we sequenced random fragments from this genome and compared the data to the type strain.

View Article and Find Full Text PDF

A whole-genome duplication occurred in a shared ancestor of the yeast species Saccharomyces cerevisiae, Saccharomyces castellii and Candida glabrata. Here we trace the subsequent losses of duplicated genes, and show that the pattern of loss differs among the three species at 20% of all loci. For example, several transcription factor genes, including STE12, TEC1, TUP1 and MCM1, are single-copy in S.

View Article and Find Full Text PDF