Publications by authors named "Jonathan L Doty"

There is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation.

View Article and Find Full Text PDF

5-F substitution of an aminothiazole moiety within a series of thrombopoietin receptor agonists leads to potent agents with an improved hepatic safety profile in rodent toxicology studies.

View Article and Find Full Text PDF

Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety.

View Article and Find Full Text PDF

PF-956980 is a selective inhibitor of JAK3, related in structure to CP-690550, a compound being evaluated in clinical trials for rheumatoid arthritis and prevention of allograft rejection. PF-956980 has been evaluated against a panel of 30 kinases, and found to have nanomolar potency against only JAK3. Cellular and whole blood activity of this compound parallels its potency and selectivity in enzyme assays.

View Article and Find Full Text PDF

A series of pyrimidine benzamide-based thrombopoietin receptor agonists is described. The lead molecule contains a 2-amino-5-unsubstituted thiazole, a group that has been associated with idiosyncratic toxicity. The potential for metabolic oxidation at C-5 of the thiazole, the likely source of toxic metabolites, was removed by substitution at C-5 or by replacing the thiazole with a thiadiazole.

View Article and Find Full Text PDF

Novel classes of thienopyrimidines and thienopyridines have been identified as potent inhibitors of VEGFR-2 kinase. The synthesis and SAR of these compounds is presented, along with successful efforts to diminish EGFR activity present in the lead series.

View Article and Find Full Text PDF