Publications by authors named "Jonathan Keats"

Article Synopsis
  • Multiple myeloma (MM) is a type of cancer that starts in plasma cells and is divided into two main genetic subtypes: hyperdiploid and non-hyperdiploid.
  • This study used human myeloma cell lines (HMCLs) to investigate protein expression of cell surface markers relevant to MM treatment, finding that some markers were consistently expressed while others showed variation.
  • Analysis revealed that some HMCLs closely matched the characteristics of patient-derived samples, highlighting the need for careful selection of cell lines to best model MM for research and therapeutic purposes.
View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by cytogenetic abnormalities, such as t(11;14)(q13;q32), resulting in CCND1 overexpression. The rs9344 G allele within CCND1 is the most significant susceptibility allele for t(11;14). Sequencing data from 2 independent cohorts, CoMMpass (n = 698) and Mayo Clinic (n = 661), confirm the positive association between the G allele and t(11;14).

View Article and Find Full Text PDF

Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The Multiple Myeloma Research Foundation's Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile study ( NCT01454297 ) is a longitudinal, observational clinical study of newly diagnosed patients with multiple myeloma (n = 1,143) where tumor samples are characterized using whole-genome sequencing, whole-exome sequencing and RNA sequencing at diagnosis and progression, and clinical data are collected every 3 months. Analyses of the baseline cohort identified genes that are the target of recurrent gain-of-function and loss-of-function events.

View Article and Find Full Text PDF

Unlabelled: Clonal hematopoiesis (CH) at time of autologous stem cell transplant (ASCT) has been shown to be associated with decreased overall survival (OS) and progression-free survival (PFS) in patients with multiple myeloma not receiving immunomodulatory drugs (IMiD). However, the significance of CH in newly diagnosed patients, including transplant ineligible patients, and its effect on clonal evolution during multiple myeloma therapy in the era of novel agents, has not been well studied. Using our new algorithm to differentiate tumor and germline mutations from CH, we detected CH in approximately 10% of 986 patients with multiple myeloma from the Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) cohort (40/529 transplanted and 59/457 non-transplanted patients).

View Article and Find Full Text PDF

Unlabelled: Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes.

View Article and Find Full Text PDF

B cell maturation antigen (BCMA) target loss is considered to be a rare event that mediates multiple myeloma (MM) resistance to anti-BCMA chimeric antigen receptor T cell (CAR T) or bispecific T cell engager (TCE) therapies. Emerging data report that downregulation of G-protein-coupled receptor family C group 5 member D (GPRC5D) protein often occurs at relapse after anti-GPRC5D CAR T therapy. To examine the tumor-intrinsic factors that promote MM antigen escape, we performed combined bulk and single-cell whole-genome sequencing and copy number variation analysis of 30 patients treated with anti-BCMA and/or anti-GPRC5D CAR T/TCE therapy.

View Article and Find Full Text PDF

Drug resistance and disease progression are common in multiple myeloma (MM) patients, underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 potentially synergistic combinations. We hypothesized that effective combinations would reduce MYC expression and enhance p16 activity.

View Article and Find Full Text PDF

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies.

View Article and Find Full Text PDF

Alternative splicing plays a pivotal role in tumorigenesis and proliferation. However, its pattern and pathogenic role has not been systematically analyzed in multiple myeloma or its subtypes. Alternative splicing profiles for 598 newly diagnosed myeloma patients with comprehensive genomic annotation identified primary translocations, 1q amplification, and DIS3 events to have more differentially spliced events than those without.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma is a type of cancer affecting plasma cells, characterized by specific genetic changes that evolve as the disease progresses.
  • The study introduces a new method called CapIG-seq, which efficiently detects important genetic rearrangements, oncogenic translocations, and mutations related to myeloma, addressing limitations of previous PCR-based techniques.
  • The results show that CapIG-seq aligns well with existing sequencing methods and is effective in analyzing both cancer cell lines and patient samples, indicating its potential for better understanding and monitoring myeloma.
View Article and Find Full Text PDF

The multiple myeloma treatment landscape has changed dramatically. This change, paralleled by an increase in scientific knowledge, has resulted in significant improvement in survival. However, heterogeneity remains in clinical outcomes, with a proportion of patients not benefiting from current approaches and continuing to have a poor prognosis.

View Article and Find Full Text PDF

Deciphering genomic architecture is key to identifying novel disease drivers and understanding the mechanisms underlying myeloma initiation and progression. In this work, using the CoMMpass dataset, we show that structural variants (SV) occur in a nonrandom fashion throughout the genome with an increased frequency in the t(4;14), RB1, or TP53 mutated cases and reduced frequency in t(11;14) cases. By mapping sites of chromosomal rearrangements to topologically associated domains and identifying significantly upregulated genes by RNAseq we identify both predicted and novel putative driver genes.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying myeloma cells (a type of cancer) to find new proteins on their surface that can be targeted for treatment.
  • They discovered a new protein called SEMA4A that is important for myeloma cell growth, which means it could be a good target for therapy.
  • They created a special treatment that can specifically attack SEMA4A and tested it successfully in labs and on animals.
View Article and Find Full Text PDF

The remarkable genetic heterogeneity of multiple myeloma poses a substantial challenge for proper prognostication and clinical management of patients. Here, we introduce MM-PSN, the first multiomics patient similarity network of myeloma. MM-PSN enabled accurate dissection of the genetic and molecular landscape of the disease and determined 12 distinct subgroups defined by five data types generated from genomic and transcriptomic profiling of 655 patients.

View Article and Find Full Text PDF
Article Synopsis
  • Children with treatment-refractory or relapsed tumors often have poor outcomes, and the genetic factors contributing to these conditions are not fully understood.
  • A study of 202 patients revealed that relapsed tumors had higher mutational burdens than untreated ones, with over 40% displaying mutations linked to previous chemotherapy treatments.
  • Analysis showed variations in neoantigens and immune cell presence, hinting at tumor evolution and resistance mechanisms that complicate treatment strategies.
View Article and Find Full Text PDF

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence.

View Article and Find Full Text PDF

Plasma cell leukemia is a rare and aggressive plasma cell dyscrasia associated with dismal outcomes. It may arise de novo, primary plasma cell leukemia, or evolve from an antecedent diagnosis of multiple myeloma, secondary plasma cell leukemia. Despite highly effective therapeutics, survival for plasma cell leukemia patients remains poor.

View Article and Find Full Text PDF

Although combination BRAF and MEK inhibitors are highly effective for the 40-50% of cutaneous metastatic melanomas harboring BRAFV600 mutations, targeted agents have been ineffective for BRAFV600wild-type (wt) metastatic melanomas. The SU2C Genomics-Enabled Medicine for Melanoma Trial utilized a Simon two-stage optimal design to assess whether comprehensive genomic profiling improves selection of molecular-based therapies for BRAFV600wt metastatic melanoma patients who had progressed on standard-of-care therapy, which may include immunotherapy. Of the response-evaluable patients, binimetinib was selected for 20 patients randomized to the genomics-enabled arm, and nine were treated on the alternate treatment arm.

View Article and Find Full Text PDF

Purpose: Multiple myeloma is a malignancy of plasma cells. Extensive genetic and transcriptional characterization of myeloma has identified subtypes with prognostic and therapeutic implications. In contrast, relatively little is known about the myeloma epigenome.

View Article and Find Full Text PDF

Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood.

View Article and Find Full Text PDF

Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) within the BM. The BM microenvironment supports survival of the malignant cells and is composed of cellular fractions that foster myeloma development and progression by suppression of the immune response. Despite major progress in understanding the biology and pathophysiology of MM, this disease is still incurable and requires aggressive treatment with significant side effects.

View Article and Find Full Text PDF

Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex.

View Article and Find Full Text PDF

The landscape of structural variants (SVs) in multiple myeloma remains poorly understood. Here, we performed comprehensive analysis of SVs in a large cohort of 752 multiple myeloma patients by low coverage long-insert whole genome sequencing. We identified 68 SV hotspots involving 17 new candidate driver genes, including the therapeutic targets BCMA (), and Catastrophic complex rearrangements termed chromothripsis were present in 24% of patients and independently associated with poor clinical outcomes.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a blood neoplasia characterized by abnormal proliferation of plasma cells. Various treatments such as stem cell transplant (SCT), proteasome inhibitors, immune-modulating drugs, monoclonal antibodies and selective inhibitors of nuclear export have been routinely used to treat MM. However, relapse and treatment resistance are common problems in MM patients.

View Article and Find Full Text PDF