Publications by authors named "Jonathan Kagan"

While apoptosis dismantles the cell to enforce immunological silence, pyroptotic cell death provokes inflammation. Little is known of the structural architecture of cells undergoing pyroptosis, and whether pyroptotic corpses are immunogenic. Here we report that inflammasomes trigger the Gasdermin-D- and calcium-dependent eruption of filopodia from the plasma membrane minutes before pyroptotic cell rupture, to crown the resultant corpse with filopodia.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how 35 nuclear receptors (NRs) influence the differentiation and maintenance of key immune cells using a method called "Rainbow-CRISPR."
  • It finds that receptors for retinoic acid have significant and specific roles in various immune cell types, particularly in macrophages.
  • Notably, it uncovers a unique function of the retinoic acid receptor gamma (RARγ) in regulating immune cell survival and inflammasome activity, revealing its dual role in promoting health or cell death in macrophages.
View Article and Find Full Text PDF

Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD), triggering inflammatory cell death known as pyroptosis. Caspase-11 also detects eukaryotic ( self) lipids. This observation raises the question of whether common or distinct mechanisms govern the interactions with self and nonself lipids.

View Article and Find Full Text PDF
Article Synopsis
  • Innate immune pattern recognition receptors, like Toll-like receptors (TLRs), play a crucial role in the immune response to infections and influence our understanding of health and disease.
  • Researchers engineered macrophages to study the myddosome, a critical component of TLR signaling, revealing its dynamic nature and the formation of barrel-like structures that help recruit essential proteins.
  • The findings suggest that myddosomes are vital for TLR signaling and that some pathogens, like Listeria monocytogenes, can evade this immune response during their spread between cells.
View Article and Find Full Text PDF

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways.

View Article and Find Full Text PDF

Single-stranded DNA containing CGT/A motifs binds to the helicase domain of Schlafen 11 (SLFN11) to initiate cell death and cytokine production via SLFN11 ribonuclease activity (see related Research Article by Zhang ).

View Article and Find Full Text PDF

Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8 T cells and weak migratory activities of dendritic cells (DCs).

View Article and Find Full Text PDF

Inflammation is an essential defense response but operates at the cost of normal functions. Whether and how the negative impact of inflammation is monitored remains largely unknown. Acidification of the tissue microenvironment is associated with inflammation.

View Article and Find Full Text PDF

Several interleukin-1 (IL-1) family members, including IL-1β and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation).

View Article and Find Full Text PDF

Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation.

View Article and Find Full Text PDF

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT). Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS).

View Article and Find Full Text PDF

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner.

View Article and Find Full Text PDF

The host type I interferon (IFN) pathway is a major signature of inflammation induced by the human fungal pathogen, Candida albicans. However, the molecular mechanism for activating this pathway in the host defence against C. albicans remains unknown.

View Article and Find Full Text PDF

Inflammatory caspases are key enzymes in mammalian innate immunity that control the processing and release of interleukin-1 (IL-1)-family cytokines. Despite the biological importance, the structural basis for inflammatory caspase-mediated cytokine processing has remained unclear. To date, catalytic cleavage of IL-1-family members, including pro-IL-1β and pro-IL-18, has been attributed primarily to caspase-1 activities within canonical inflammasomes.

View Article and Find Full Text PDF

Nucleic acid-based vaccines hold promise in preventing infections and treating cancer. The most common use of this technology is to encode antigenic proteins on mRNAs that are delivered to cells via lipid nanoparticle (LNP) formulations. In this study, we discovered that immunostimulatory proteins can also be encoded on mRNAs in LNPs.

View Article and Find Full Text PDF

Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage.

View Article and Find Full Text PDF

The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity.

View Article and Find Full Text PDF

Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes.

View Article and Find Full Text PDF

DNA derived from chemotherapeutics-killed tumor cells is one of the most important damage-associated molecular patterns that can activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway in antigen-presenting cells (APCs) and promote antitumor immunity. However, conventional chemotherapy displays limited tumor cell killing and ineffective transfer of stable tumor DNA to APCs. Here we show that liposomes loaded with an optimized ratio of indocyanine green and doxorubicin, denoted as LID, efficiently generate reactive oxygen species upon exposure to ultrasound.

View Article and Find Full Text PDF

The regulated disruption of the plasma membrane, which can promote cell death, cytokine secretion or both is central to organismal health. The protein gasdermin D (GSDMD) is a key player in this process. GSDMD forms membrane pores that can promote cytolysis and the release of interleukin-1 family cytokines into the extracellular space.

View Article and Find Full Text PDF

Within immune cells, microbial and self-ligands trigger pattern recognition receptors (PRRs) to nucleate and activate the signaling organelles of the immune system. Much work in this area has derived from observational biology of natural innate immune signaling. More recently, synthetic biology approaches have been used to rewire and study innate immune networks.

View Article and Find Full Text PDF
Article Synopsis
  • Gasdermin D (GSDMD) plays a crucial role in inflammatory responses by forming membrane pores that lead to cell death, but its activation requires a specific modification known as palmitoylation.
  • This palmitoylation occurs at a key site (Cys191) and is regulated by the cellular redox state influenced by reactive oxygen species (ROS), which highlights a connection between inflammation and oxidative stress.
  • GSDMD is more effective at pore formation once palmitoylated, and this mechanism may also affect other members of the gasdermin family, suggesting a broader implication for inflammatory processes.
View Article and Find Full Text PDF

Some of the current and former organizers of the Cold Spring Harbor Laboratory (CSHL) 'Gene Expression and Signaling in the Immune System' (GESIS) meeting offer opinions on emerging questions in immunology, discussing the strong value of this recurring scientific meeting in the field.

View Article and Find Full Text PDF