Objective: Electroconvulsive therapy (ECT) has been occasionally applied as a treatment for super-refractory status epilepticus (SRSE). However, the effects of ECT on electrographic activity and related clinical outcomes are largely unknown. Here, we use quantitative approaches on electroencephalography (EEG) data to evaluate the neurophysiological influences of ECT and how they may relate to patient survival.
View Article and Find Full Text PDFJ Am Coll Emerg Physicians Open
October 2024
Background: Point-of-care electroencephalography (EEG) devices can be rapidly applied and do not require specialized technologists, creating new opportunities to use EEG during prehospital care. We evaluated the feasibility of point-of-care EEG during ambulance transport for 911 calls.
Methods: This mixed-methods study was conducted between May 28, 2022 and October 28, 2023.
Objective: Brain areas implicated in semantic memory can be damaged in patients with epilepsy (PWE). However, it is challenging to delineate semantic processing deficits from acoustic, linguistic, and other verbal aspects in current neuropsychological assessments. We developed a new Visual-based Semantic Association Task (ViSAT) to evaluate nonverbal semantic processing in PWE.
View Article and Find Full Text PDFObjective: Cognitive impairment often impacts quality of life in epilepsy even if seizures are controlled. Word-finding difficulty is particularly prevalent and often attributed to etiological (static, baseline) circuit alterations. We sought to determine whether interictal discharges convey significant superimposed contributions to word-finding difficulty in patients, and if so, through which cognitive mechanism(s).
View Article and Find Full Text PDFThe evaluation of new seizures is a common clinical query for neurologists. It can be challenging to delineate between the numerous etiologies of new focal or generalized seizures and, if focal, to localize their onset. In this case report, we present a 26-year-old patient with a new onset of stereotyped events concerning for seizures featuring facial grimacing, dystonic left-hand posturing, and convulsions with immediate return to baseline.
View Article and Find Full Text PDFBackground: In classic speech network models, the primary auditory cortex is the source of auditory input to Wernicke's area in the posterior superior temporal gyrus (pSTG). Because resection of the primary auditory cortex in the dominant hemisphere removes inputs to the pSTG, there is a risk of speech impairment. However, recent research has shown the existence of other, nonprimary auditory cortex inputs to the pSTG, potentially reducing the risk of primary auditory cortex resection in the dominant hemisphere.
View Article and Find Full Text PDFThe hippocampus is diversely interconnected with other brain systems along its axis. Cycles of theta-frequency activity are believed to propagate from the septal to temporal pole, yet it is unclear how this one-way route supports the flexible cognitive capacities of this structure. We leveraged novel thin-film microgrid arrays conformed to the human hippocampal surface to track neural activity two-dimensionally in vivo.
View Article and Find Full Text PDFParoxysms are sudden, unpredictable, short-lived events that abound in physiological processes and pathological disorders, from cellular functions (e.g., hormone secretion and neuronal firing) to life-threatening attacks (e.
View Article and Find Full Text PDFObjective: Intracranial electroencephalography (ICEEG) recordings are performed for seizure localization in medically refractory epilepsy. Signal quantifications such as frequency power can be projected as heatmaps on personalized three-dimensional (3D) reconstructed cortical surfaces to distill these complex recordings into intuitive cinematic visualizations. However, simultaneously reconciling deep recording locations and reliably tracking evolving ictal patterns remain significant challenges.
View Article and Find Full Text PDFIntracranial electroencephalography (IEEG) involves recording from electrodes placed directly onto the cortical surface or deep brain locations. It is performed on patients with medically refractory epilepsy, undergoing pre-surgical seizure localization. IEEG recordings, combined with advancements in computational capacity and analysis tools, have accelerated cognitive neuroscience.
View Article and Find Full Text PDFObjective: We conducted clinical testing of an automated Bayesian machine learning algorithm (Epilepsy Seizure Assessment Tool [EpiSAT]) for outpatient seizure risk assessment using seizure counting data, and validated performance against specialized epilepsy clinician experts.
Methods: We conducted a prospective longitudinal study of EpiSAT performance against 24 specialized clinician experts at three tertiary referral epilepsy centers in the United States. Accuracy, interrater reliability, and intra-rater reliability of EpiSAT for correctly identifying changes in seizure risk (improvements, worsening, or no change) were evaluated using 120 seizures from four synthetic seizure diaries (seizure risk known) and 120 seizures from four real seizure diaries (seizure risk unknown).
Epilepsy is defined by the seemingly random occurrence of spontaneous seizures. The ability to anticipate seizures would enable preventative treatment strategies. A central but unresolved question concerns the relationship of seizure timing to fluctuating rates of interictal epileptiform discharges (here termed interictal epileptiform activity, IEA), a marker of brain irritability observed between seizures by electroencephalography (EEG).
View Article and Find Full Text PDFBackground: Interictal epileptiform discharges are an important biomarker for localization of focal epilepsy, especially in patients who undergo chronic intracranial monitoring. Manual detection of these pathophysiological events is cumbersome, but is still superior to current rule-based approaches in most automated algorithms.
Objective: To develop an unsupervised machine-learning algorithm for the improved, automated detection and localization of interictal epileptiform discharges based on spatiotemporal pattern recognition.
Direct intracranial recording of human brain activity is an important approach for deciphering neural mechanisms of cognition. Such recordings, usually made in patients with epilepsy undergoing inpatient monitoring for seizure localization, are limited in duration and depend on patients' tolerance for the challenges associated with recovering from brain surgery. Thus, typical intracranial recordings, similar to most non-invasive approaches in humans, provide snapshots of brain activity in acute, highly constrained settings, limiting opportunities to understand long timescale and natural, real-world phenomena.
View Article and Find Full Text PDFPeripheral nerve blocks are an increasingly viable treatment option for selected groups of headache patients, particularly those with intractable headache or facial pain. Greater occipital nerve block, the most widely used local anesthetic procedure in headache conditions, is particularly effective, safe, and easy to perform in the office. Adverse effects are few and infrequent.
View Article and Find Full Text PDFIn working memory tasks, stimulus presentation induces a resetting of intracranial temporal lobe oscillations in multiple frequency bands. To further understand the functional relevance of this phenomenon, we investigated whether working memory performance depends on the phase precision of ongoing oscillations in the hippocampus. We recorded intra-hippocampal local field potentials in individuals performing a working memory task.
View Article and Find Full Text PDFObjective: We investigated whether interictal epileptiform discharges (IED) in the human hippocampus are related to impairment of specific memory processes, and which characteristics of hippocampal IED are most associated with memory dysfunction.
Methods: Ten patients had depth electrodes implanted into their hippocampi for preoperative seizure localization. EEG was recorded during 2,070 total trials of a short-term memory task, with memory processing categorized into encoding, maintenance, and retrieval.
Neurological insults during development are associated with later impairments in learning and memory. Although remedial training can help restore cognitive function, the neural mechanisms of this recovery in memory systems are largely unknown. To examine this issue, we measured electrophysiological oscillatory activity in the hippocampus (both CA3 and CA1) and prefrontal cortex of adult rats that had experienced repeated seizures in the first weeks of life, while they were remedially trained on a delayed-nonmatch-to-sample memory task.
View Article and Find Full Text PDFEarly-life seizures (ELS) are associated with long-term behavioral disorders including autism and ADHD, suggesting that frontal lobe structures may be permanently affected. We tested whether ELS produce structural alterations in the prefrontal cortex (PFC) and impair PFC-mediated function using an operant task of behavioral flexibility in rats. Adult rats that had been exposed to 75 flurothyl seizures during postnatal days 1-10 showed decreased behavioral flexibility in the task compared to controls over multiple behavioral sessions, measured as a lever preference asymmetry (p<0.
View Article and Find Full Text PDFInterictal spikes have been implicated in epileptogenesis and cognitive dysfunction in epilepsy. Unfortunately, antiepileptic drugs have shown poor efficacy in suppressing interictal discharges; novel therapies are needed. Surface charge on neuronal membranes provides a novel target for abolishing interictal spikes.
View Article and Find Full Text PDF