Publications by authors named "Jonathan Jarvik"

Purpose: Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo.

View Article and Find Full Text PDF

We demonstrate selective labeling of cell surface proteins using fluorogen-activating proteins (FAPs) conjugated to standard immunoglobulins (IgGs). Conjugation was achieved with a polypeptide reagent comprised of an N-terminal photoactivatable Fc-binding domain and a C-terminal FAP domain. The resulting FAP-antibody conjugates were effective agents for protein detection and cell ablation in cultured mammalian cells and for visualizing cell-cell contacts using a tethered fluorogen assay.

View Article and Find Full Text PDF

A novel bi-partite fluorescence platform exploits the high affinity and selectivity of antibody scaffolds to capture and activate small-molecule fluorogens. In this report, we investigated the property of multi-selectivity activation by a single antibody against diverse cyanine family fluorogens. Our fluorescence screen identified three cell-impermeant fluorogens, each with unique emission spectra (blue, green and red) and nanomolar affinities.

View Article and Find Full Text PDF

We describe proof-of-concept for a novel approach for visualizing regions of close apposition between the surfaces of living cells. A membrane-anchored protein with high affinity for a chemical ligand is expressed on the surface of one set of cells, and the cells are co-cultured with a second set of cells that express a membrane-anchored fluorogen-activating protein (FAP). The co-cultured cells are incubated with a bivalent reagent composed of fluorogen linked to the high-affinity ligand, with the concentration of the bivalent reagent chosen to be less than the binding constant for the FAP-fluorogen pair but greater than the binding constant for the ligand-high-affinity protein pair.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a new biosensor system called TEFLA that detects when cell surface proteins are close to each other in live cells by using fluorescent compounds and specific proteins.
  • - The system utilizes fluorogen-activating proteins (FAPs), which only emit fluorescence when they bind to non-fluorescent fluorogen molecules, allowing for the visualization of protein proximity.
  • - By expressing two rapamycin-binding proteins in HeLa cells and using a special ligand, researchers could increase fluorescence significantly when rapamycin was added, indicating successful dimerization and proximity of the proteins.
View Article and Find Full Text PDF

A new class of biosensors, fluorogen activating proteins (FAPs), has been successfully used to track receptor trafficking in live cells. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens, and thus FAP-based assays are highly sensitive. Application of the FAP-based assay for protein trafficking in high-throughput flow cytometry resulted in the discovery of a new class of compounds that interferes with the binding between fluorogens and FAP, thus blocking the fluorescence signal.

View Article and Find Full Text PDF

A recently described fluorescence biosensor platform utilizes single-chain Fv (scFvs) that selectively bind and activate fluorogen molecules. In this report we investigated the display of tandem scFv biosensors at the surface of mammalian cells with the aim of advancing current fluorescence detection strategies. We initially screened different peptide linkers to separate each scFv unit, and discovered that tandem proteins joined by either flexible or α-helical linkers properly fold and display at the surface of mammalian cells.

View Article and Find Full Text PDF

Current advancements in biological protein discovery utilize bi-partite methods of fluorescence detection where chromophore and scaffold are uncoupled. One such technology, called fluorogen-activating proteins (FAPs), consists of single-chain-variable-fragments (scFvs) selected against small organic molecules (fluorogens) that are non-fluorescent in solution, but highly fluorescent when bound to the scFv. In unusual circumstances a scFv may activate similar fluorogens from a single chemical family.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) play stimulatory or modulatory roles in numerous physiological states and processes, including growth and development, vision, taste and olfaction, behavior and learning, emotion and mood, inflammation, and autonomic functions such as blood pressure, heart rate, and digestion. GPCRs constitute the largest protein superfamily in the human and are the largest target class for prescription drugs, yet most are poorly characterized, and of the more than 350 nonolfactory human GPCRs, over 100 are orphans for which no endogenous ligand has yet been convincingly identified. We here describe new live-cell assays that use recombinant GPCRs to quantify two general features of GPCR cell biology-receptor desensitization and resensitization.

View Article and Find Full Text PDF

Fluorescence biosensors are indispensable tools for understanding protein behavior and function in cells. Recent advancements utilize fluorogen-activating-proteins (FAPs) that form complexes with small organic molecules (fluorogens) and result in their fluorescence activation. The technology has found multiple uses in protein discovery applications; however, the current method of detection requires the expression of FAPs as gene fusion tags in cells-a process that is time- and labor-intensive.

View Article and Find Full Text PDF

We combined fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform allows drug discovery for trafficking receptors, such as G protein-coupled receptors, receptor tyrosine kinases, and ion channels, which were previously not suitable for high-throughput screening by flow cytometry. The system has been validated using the β2-adrenergic receptor (β2AR) system and extended to other GPCRs.

View Article and Find Full Text PDF

Unlabelled: The chemokine receptor CCR5 is essential for HIV infection and is thus a potential target for vaccine development. However, because CCR5 is a host protein, generation of anti-CCR5 antibodies requires the breaking of immune tolerance and thus carries the risk of autoimmune responses. In this study, performed in mice, we compared 3 different immunogens representing surface domains of murine CCR5, 4 different adjuvants, and 13 different immunization protocols, with the goal of eliciting HIV-blocking activity without inducing autoimmune dysfunction.

View Article and Find Full Text PDF

Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection.

View Article and Find Full Text PDF

Motivation: Evaluation of previous systems for automated determination of subcellular location from microscope images has been done using datasets in which each location class consisted of multiple images of the same representative protein. Here, we frame a more challenging and useful problem where previously unseen proteins are to be classified.

Results: Using CD-tagging, we generated two new image datasets for evaluation of this problem, which contain several different proteins for each location class.

View Article and Find Full Text PDF

Monitoring the trafficking of multiple proteins simultaneously in live cells is of great interest because many receptor proteins are found to function together with others in the same cell. However, existing fluorescent labeling techniques have restricted the mechanistic study of functional receptor pairs. We have expanded a hybrid system combining fluorogen-activating protein (FAP) technology and high-throughput flow cytometry to a new type of biosensor that is robust, sensitive, and versatile.

View Article and Find Full Text PDF

We developed a platform combining fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform facilitates drug discovery for trafficking receptors such as G protein-coupled receptors and was validated with the β₂-adrenergic receptor (β₂AR) system. When a chemical library containing ∼1200 off-patent drugs was screened against cells expressing FAP-tagged β₂ARs, all 33 known β₂AR-active ligands in the library were successfully identified, together with a number of compounds that might regulate receptor internalization in a nontraditional manner.

View Article and Find Full Text PDF

Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane.

View Article and Find Full Text PDF

Academia and small business research units are poised to play an increasing role in drug discovery, with drug repurposing as one of the major areas of activity. Here we summarize project status for a number of drugs or classes of drugs: raltegravir, cyclobenzaprine, benzbromarone, mometasone furoate, astemizole, R-naproxen, ketorolac, tolfenamic acid, phenothiazines, methylergonovine maleate and beta-adrenergic receptor drugs, respectively. Based on this multi-year, multi-project experience we discuss strengths and weaknesses of academic-based drug repurposing research.

View Article and Find Full Text PDF

The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacteriophages are a type of virus that specifically infect mycobacterial hosts, such as Mycobacterium smegmatis and Mycobacterium tuberculosis, and are characterized by their diverse genetic makeup.
  • Recent research isolated and sequenced 18 new mycobacteriophages from different locations in the U.S., adding to the understanding of phage diversity and mobile elements in viral evolution.
  • The study also emphasizes the educational aspect, showing how freshman college students can engage in real research by isolating and analyzing these bacteriophages.
View Article and Find Full Text PDF

This study explores the general utility of a new class of biosensor that allows one to selectively visualize molecules of a chosen membrane protein that are at the cell surface. These biosensors make use of recently described bipartite fluoromodules comprised of a fluorogen-activating protein (FAP) and a small molecule (fluorogen) whose fluorescence increases dramatically when noncovalently bound by the FAP (Szent-Gyorgyi et al., Nat Biotechnol 2010;00:000-000).

View Article and Find Full Text PDF

Ligand-dependent receptor internalization is a feature of numerous signaling systems. In this article, the authors describe a new kind of live-cell biosensor of receptor internalization that takes advantage of fluorogen-activating protein (FAP) technology. Recombinant genes that express the human beta2 adrenergic receptor (beta2AR) with FAP domains at their extracellular N-termini were transduced into mammalian cells.

View Article and Find Full Text PDF

Protein subcellular location is one of the most important determinants of protein function during cellular processes. Changes in protein behavior during the cell cycle are expected to be involved in cellular reprogramming during disease and development, and there is therefore a critical need to understand cell-cycle dependent variation in protein localization which may be related to aberrant pathway activity. With this goal, it would be useful to have an automated method that can be applied on a proteomic scale to identify candidate proteins showing cell-cycle dependent variation of location.

View Article and Find Full Text PDF

The Src tyrosine kinase associates with the focal adhesion adaptor protein Cas (Crk-associated substrate) to suppress the expression of potential tumor suppressor genes. For example, Src utilizes Cas to suppress the expression of the LIM-only protein Fhl1 (four and a half LIM domains 1), in order to promote non-anchored tumor-cell growth and migration. Here, we report that the promoter region of the Fhl1 gene was methylated more in Src-transformed cells than non-transformed cells.

View Article and Find Full Text PDF