Publications by authors named "Jonathan James Stanley Rickard"

Micro- and nanopatterning of materials, one of the cornerstones of emerging technologies, has transformed research capabilities in lab-on-a-chip diagnostics. Herein, a micro- and nanolithographic method is developed, enabling structuring materials at the submicron scale, which can, in turn, accelerate the development of miniaturized platform technologies and biomedical sensors. Underpinning it is the advanced electro-hydrodynamic surface molecular lithography, via inducing interfacial instabilities produces micro- and nanostructured substrates, uniquely integrated with synthetic surface recognition.

View Article and Find Full Text PDF

Even in the face of the COVID-19 pandemic, Tuberculosis (TB) continues to be a major public health problem and the 2nd biggest infectious cause of death worldwide. There is, therefore, an urgent need to develop effective TB diagnostic methods, which are cheap, portable, sensitive and specific. Raman spectroscopy is a potential spectroscopic technique for this purpose, however, so far, research efforts have focused primarily on the characterisation of Mycobacterium tuberculosis and other Mycobacteria, neglecting bacteria within the microbiome and thus, failing to consider the bigger picture.

View Article and Find Full Text PDF

Traumatic brain injury (TBI), a major cause of morbidity and mortality worldwide, is hard to diagnose at the point of care with patients often exhibiting no clinical symptoms. There is an urgent need for rapid point-of-care diagnostics to enable timely intervention. We have developed a technology for rapid acquisition of molecular fingerprints of TBI biochemistry to safely measure proxies for cerebral injury through the eye, providing a path toward noninvasive point-of-care neurodiagnostics using simultaneous Raman spectroscopy and fundus imaging of the neuroretina.

View Article and Find Full Text PDF

Diagnostic advancements require continuous developments of reliable analytical sensors, which can simultaneously fulfill many criteria, including high sensitivity and specificity for a broad range of target analytes. Incorporating the highly sensitive attributes of surface-enhanced Raman spectroscopy (SERS) combined with highly specific analyte recognition capabilities via molecular surface functionalization could address major challenges in molecular diagnostics and analytical spectroscopy fields. Herein, we have established a controllable molecular surface functionalization process for a series of textured gold surfaces.

View Article and Find Full Text PDF

The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide.

View Article and Find Full Text PDF

Saliva analysis has been gaining interest as a potential non-invasive source of disease indicative biomarkers due to being a complex biofluid correlating with blood-based constituents on a molecular level. For saliva to cement its usage for analytical applications, it is paramount to gain underpinning molecular knowledge and establish a 'baseline' of the salivary composition in healthy individuals as well as characterize how these factors are impacting its performance as potential analytical biofluid. Here, we have systematically studied the molecular spectral fingerprint of saliva, including the changes associated with gender, age, and time.

View Article and Find Full Text PDF

The unique attributes of surface enhanced Raman spectroscopy (SERS) make it well suited to address the challenges associated with portable diagnostics. However, despite the remarkable progress in this field, where the instrumentation has made great strides forward providing a route to the miniaturization of sensing devices, to date producing three-dimensional low-cost SERS substrates which simultaneously fulfill the multitude of criteria of high sensitivity, reproducibility, tunability, multiplexity, and integratability for rapid sensing has not yet been accomplished. Successful implementation of SERS requires readily fine-tuned nanostructures, which create a high enhancement.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) pushes past the boundaries and inherent weaknesses of Raman spectroscopy, with a great potential for a broad range of applications particularly, for sensing. Yet, current real world applications are limited due to poor reproducibility, low-throughput, and stability issues. Here, we present the design and fabrication of self-assembly guided structures based on adjustable block co-polymer (BCP) nanomorphologies and demonstrate reproducible SERS enhancement across large areas.

View Article and Find Full Text PDF

Retention of hydrophobic active agents on human skin following the use of skin-care formulations is an important indication of the performance of the deposited product. We have developed a novel system which replicates the interaction between human skin and a cosmetic emulsion to systematically establish and characterize the key parameters driving the retention process at the interface. This included a comprehensive study of the skin's biology and physical properties which influenced the process, the fabrication of advanced, improved skin biomimics, the formulation of a cosmetic model-system emulsion, comprising a hydrophobic active agent i.

View Article and Find Full Text PDF

The development of a robust, cost-effective, scalable and simple technique that enables the design and construction of well-controlled large area superhydrophobic surface structures which can be easily tuned from lotus-leaf to rose-petal state is essential to enable progress in realising the full applied potential of such surfaces. In this study, we introduce the tuneable carbon nanotubes-based electrohydrodynamic lithography (CNT-EHL) to fabricate unique multiscale structured cones and nanohair-like architectures with various periodicities and dimensions, successfully enabling surface energy minimization. The possibility of contact-less lithography via the CNT-EHL morphology replication combined with the electric field coupling to smaller self-assembled patterns within the film, provides a way for hierarchical structure control spanning many length scales along with tuneable wetting capabilities.

View Article and Find Full Text PDF

An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers.

View Article and Find Full Text PDF