Objective: To evaluate adeno-associated virus (AAV) mediated renal gene transfer, by examining the localization and time course of gene expression in the kidneys of mice with unilateral ureteric obstruction (UUO) and controls. AAV is a replication-defective virus that has the potential to deliver genes into the kidney to improve renal damage after UUO.
Materials And Methods: An AAV vector carrying a green fluorescent protein (GFP) reporter gene (rAAV-GFP) was used.
Background: Progression of renal injury after relief of unilateral ureteral obstruction (UUO) has been demonstrated. Nitric oxide (NO) may be an effective intervention due to its vasodilatory, antifibrotic, and anti-apoptotic effects. Herein, we used dietary L-arginine (ARG) supplementation in a UUO relief model.
View Article and Find Full Text PDFBackground: The protective effect of nitric oxide has been demonstrated in several renal disease models. We augmented renal nitric oxide production by transfer of the inducible nitric oxide synthase (iNOS) gene into rat kidney in controls and in unilateral ureteral obstruction (UUO).
Methods: The human iNOS gene was inserted into a pcDNA 3.
Progression of renal damage after relief of unilateral ureteral obstruction (UUO) has been demonstrated, especially in neonatal rats. We evaluated renal function and renal damage after relief of 3-day UUO in five groups of adult rats: group 1, no treatment; group 2, 3-day UUO; groups 3-5, 3-day UUO followed by relief; group 3, 7-day relief; group 4, 14-day relief; and group 5, 28-day relief. Glomerular filtration rate (GFR), renal blood flow (RBF), tissue transforming growth factor-beta (TGF-beta), interstitial fibrosis and fibroblast expression, tubular apoptosis, macrophage infiltration, expression of nitric oxide synthases (NOS), and urinary nitrate/nitrite (NO(2)/NO(3)) were evaluated.
View Article and Find Full Text PDF