After initial declines, in mid-2020 a resurgence in transmission of novel coronavirus disease (COVID-19) occurred in the United States and Europe. As efforts to control COVID-19 disease are reintensified, understanding the age demographics driving transmission and how these affect the loosening of interventions is crucial. We analyze aggregated, age-specific mobility trends from more than 10 million individuals in the United States and link these mechanistically to age-specific COVID-19 mortality data.
View Article and Find Full Text PDFAs of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework.
View Article and Find Full Text PDFMotivation: Approximate Bayesian computation (ABC) is an important framework within which to infer the structure and parameters of a systems biology model. It is especially suitable for biological systems with stochastic and nonlinear dynamics, for which the likelihood functions are intractable. However, the associated computational cost often limits ABC to models that are relatively quick to simulate in practice.
View Article and Find Full Text PDF