Background: Although maternal death is rare in the United Kingdom, 90% of these women had multiple health/social problems. This study aims to estimate the prevalence of pre-existing multimorbidity (two or more long-term physical or mental health conditions) in pregnant women in the United Kingdom (England, Northern Ireland, Wales and Scotland).
Study Design: Pregnant women aged 15-49 years with a conception date 1/1/2018 to 31/12/2018 were included in this population-based cross-sectional study, using routine healthcare datasets from primary care: Clinical Practice Research Datalink (CPRD, United Kingdom, n = 37,641) and Secure Anonymized Information Linkage databank (SAIL, Wales, n = 27,782), and secondary care: Scottish Morbidity Records with linked community prescribing data (SMR, Tayside and Fife, n = 6099).
(1) Background: We aimed to develop a transparent machine-learning (ML) framework to automatically identify patients with a condition from electronic health records (EHRs) via a parsimonious set of features. (2) Methods: We linked multiple sources of EHRs, including 917,496,869 primary care records and 40,656,805 secondary care records and 694,954 records from specialist surgeries between 2002 and 2012, to generate a unique dataset. Then, we treated patient identification as a problem of text classification and proposed a transparent disease-phenotyping framework.
View Article and Find Full Text PDFBackground: Patients' smoking status is routinely collected by General Practitioners (GP) in UK primary health care. There is an abundance of Read codes pertaining to smoking, including those relating to smoking cessation therapy, prescription, and administration codes, in addition to the more regularly employed smoking status codes. Large databases of primary care data are increasingly used for epidemiological analysis; smoking status is an important covariate in many such analyses.
View Article and Find Full Text PDF