. In current clinical practice for quality assurance (QA), intensity modulated proton therapy (IMPT) fields are verified by measuring planar dose distributions at one or a few selected depths in a phantom. A QA device that measures full 3D dose distributions at high spatiotemporal resolution would be highly beneficial for existing as well as emerging proton therapy techniques such as FLASH radiotherapy.
View Article and Find Full Text PDFBackground: Position verification and motion monitoring are critical for safe and precise radiotherapy (RT). Existing approaches to these tasks based on visible light or x-ray are suboptimal either because they cannot penetrate obstructions to the patient's skin or introduce additional radiation exposure. The low-cost mmWave radar is an ideal solution for these tasks as it can monitor patient position and motion continuously throughout the treatment delivery.
View Article and Find Full Text PDFMevion's single-room HYPERSCAN proton therapy system employs a proton multileaf collimator called the adaptive aperture (AA), which collimates individual spots in the proton delivery as determined by the Treatment Planning System (TPS). The purpose of this study is to assess the dosimetric benefits of the AA, specifically in the dynamic aperture (DA) mode, and evaluate its impact on proton treatment plan quality as compared to a traditional pencil beam scanning (PBS) system (Varian ProBeam). The spot dose distributions with dynamic collimation (DA), a unique AA shape for each energy layer, and with static collimation (SA), a single AA collimation shape shared by all energy layers per field, were calculated and compared with the spot dose distribution of the Varian ProBeam proton therapy system.
View Article and Find Full Text PDFUltra-high dose rate (UHDR) radiotherapy (RT) or FLASH-RT can potentially reduce normal tissue toxicity. A small animal irradiator that can deliver FLASH-RT treatments similar to clinical RT treatments is needed for pre-clinical studies of FLASH-RT. We designed and simulated a novel small animal FLASH irradiator (SAFI) based on distributed x-ray source technology.
View Article and Find Full Text PDF