We report the fabrication of a dual cladding large mode area thulium-doped germanate fiber (TDGF). The fiber has a core diameter of 20 µm, a high ion concentration of 3×10/, and a hexagonal inner cladding to enhance pump absorption when cladding-pumped. Using a short fiber length, we demonstrate a compact 300 fs chirped-pulse amplification system operating at 1925 nm, investigating both core- and cladding-pumped implementations.
View Article and Find Full Text PDFWe demonstrate a continuous wave (CW) seeded synchronization-free optical parametric amplifier (OPA) pumped by a picosecond, 1 µm laser and show its performance when used as a simple yet powerful source for label-free coherent anti-Stokes Raman scattering (CARS), concurrent second harmonic generation (SHG), and two-photon fluorescence microscopy in an epi-detection geometry. The average power level of above 175 mW, spectral resolution of 8 cm, and 2 ps pulse duration are well optimized for CARS microscopy in bio-science and bio-medical imaging systems. Our OPA is a much simpler setup than either the "gold-standard" laser and optical parametric oscillator (OPO) combination traditionally used for CARS imaging, or the more recently developed OPA systems pumped with femtosecond pulses [1].
View Article and Find Full Text PDFWe report how the complex intra-pulse polarization dynamics of coherent optical wavebreaking and incoherent Raman amplification processes in all-normal dispersion (ANDi) fibers vary for femto and picosecond pump pulses. Using high temporal resolution vector supercontinuum simulations, we identify deterministic polarization dynamics caused by wavebreaking and self-phase modulation for femtosecond pulses and quasi-chaotic polarization evolution driven by Raman amplification of quantum noise for picosecond pulses. In contrast to cross-phase modulation instability, the Raman-based polarization noise has no power threshold and is reduced by aligning the higher energy polarization component with the lower index axis of the fiber.
View Article and Find Full Text PDFWe report the demonstration of a high average- and peak-power, 1925 nm, thulium-fiber based chirped pulse amplification (CPA) system. A compact, dissipative soliton thulium-fiber, mode-locked seed produced pre-chirped pulses with 25 ps duration, 45 mW output power and repetition rate of 15.7 MHz.
View Article and Find Full Text PDFHigh precision surface processing has an unmet demand for picosecond pulses with arbitrary temporal profiles in radial polarization states and at high average powers. Here, simultaneous spatial and arbitrary temporal shaping of chirped 10 - 100 picoseconds pulses is demonstrated with an Yb-doped fiber laser system generating an output power of more than 10 W at 40 MHz repetition frequency. The closed-loop control algorithm carves the pulses using a commercial, rugged, and fiberized optical pulse shaper placed at the front end of the system and uses feedback from the output pulse shapes for optimization.
View Article and Find Full Text PDFThe development of an Yb-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz.
View Article and Find Full Text PDFWe demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.
View Article and Find Full Text PDFWe report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode.
View Article and Find Full Text PDFThis paper demonstrates a single polarisation, 1.06 microm Yb-doped fiber MOPA, delivering 21 ps pulses in a diffraction limited beam at repetition rates of up to 908 MHz and average output power of 100 W. The maximum pulse energy was 1.
View Article and Find Full Text PDFWe report a picosecond fiber MOPA pumped supercontinuum source with 39 W output, spanning at least 0.4-2.25 microm at a repetition rate of 114.
View Article and Find Full Text PDFWe report the fabrication of a large mode area tellurite holey fiber from an extruded preform, with a mode area of 3000microm(2). Robust single-mode guidance at 1.55microm was confirmed by both optical measurement and numerical simulation.
View Article and Find Full Text PDFWe have demonstrated an ultrashort-pulse Yb3+-fiber laser and amplifier system that produces >400-nJ pulses at a repetition rate of 62 MHz (>25-W average power). The output pulses were recompressed to a duration of 110 fs with good pulse quality by use of a standard bulk grating-based compressor.
View Article and Find Full Text PDF