We applied an automated hippocampal segmentation technique based on adaptive boosting (AdaBoost) to the 1.5 T magnetic resonance imaging (MRI) baseline and 1-year follow-up data of 243 subjects with mild cognitive impairment (MCI), 96 with Alzheimer's disease (AD), and 145 normal controls (NC) scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). MCI subjects with positive maternal history of dementia had smaller hippocampal volumes at baseline and at follow-up, and greater 12-month atrophy rates than subjects with negative maternal history.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2010
In medical shape analysis, a critical problem is reconstructing a smooth surface of correct topology from a binary mask that typically has spurious features due to segmentation artifacts. The challenge is the robust removal of these outliers without affecting the accuracy of other parts of the boundary. In this paper, we propose a novel approach for this problem based on the Laplace-Beltrami (LB) eigen-projection and properly designed boundary deformations.
View Article and Find Full Text PDFCerebrospinal fluid (CSF) measures of Ab and tau, Pittsburgh Compound B (PIB) imaging and hippocampal atrophy are promising Alzheimer's disease biomarkers yet the associations between them are not known. We applied a validated, automated hippocampal labeling method and 3D radial distance mapping to the 1.5T structural magnetic resonance imaging (MRI) data of 388 ADNI subjects with baseline CSF Ab(42), total tau (t-tau) and phosphorylated tau (p-tau(181)) and 98 subjects with positron emission tomography (PET) imaging using PIB.
View Article and Find Full Text PDFParkinson's disease (PD) has been associated with mild cognitive impairment (PDMCI) and with dementia (PDD). Using radial distance mapping, we studied the 3D structural and volumetric differences between the hippocampi, caudates, and lateral ventricles in 20 cognitively normal elderly (NC), 12 cognitively normal PD (PDND), 8 PDMCI, and 15 PDD subjects and examined the associations between these structures and Unified Parkinson's Disease Rating Scale (UPDRS) Part III:motor subscale and Mini-Mental State Examination (MMSE) performance. There were no hippocampal differences between the groups.
View Article and Find Full Text PDFIn a genome-wide association study of structural brain degeneration, we mapped the 3D profile of temporal lobe volume differences in 742 brain MRI scans of Alzheimer's disease patients, mildly impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe volume (P<5 x 10(-7)). One SNP, rs10845840, is located in the GRIN2B gene which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit.
View Article and Find Full Text PDFWe used a previously validated automated machine learning algorithm based on adaptive boosting to segment the hippocampi in baseline and 12-month follow-up 3D T1-weighted brain MRIs of 150 cognitively normal elderly (NC), 245 mild cognitive impairment (MCI) and 97 Dementia of the Alzheimer's type (DAT) ADNI subjects. Using the radial distance mapping technique, we examined the hippocampal correlates of delayed recall performance on three well-established verbal memory tests--ADAScog delayed recall (ADAScog-DR), the Rey Auditory Verbal Learning Test -DR (AVLT-DR) and Wechsler Logical Memory II-DR (LM II-DR). We observed no significant correlations between delayed recall performance and hippocampal radial distance on any of the three verbal memory measures in NC.
View Article and Find Full Text PDFInf Process Med Imaging
September 2009
We propose in this work a novel variational method for computing maps between surfaces by combining informative geometric features and regularizing forces including inverse consistency and harmonic energy. To tackle the ambiguity in defining homologous points on smooth surfaces, we design feature functions in the data term based on the Reeb graph of the Laplace-Beltrami eigenfunctions to quantitatively describe the global geometry of elongated anatomical structures. For inverse consistency and robustness, our method computes simultaneously the forward and backward map by iteratively solving partial differential equations (PDEs) on the surfaces.
View Article and Find Full Text PDFWe compared four automated methods for hippocampal segmentation using different machine learning algorithms: 1) hierarchical AdaBoost, 2) support vector machines (SVM) with manual feature selection, 3) hierarchical SVM with automated feature selection (Ada-SVM), and 4) a publicly available brain segmentation package (FreeSurfer). We trained our approaches using T1-weighted brain MRIs from 30 subjects [10 normal elderly, 10 mild cognitive impairment (MCI), and 10 Alzheimer's disease (AD)], and tested on an independent set of 40 subjects (20 normal, 20 AD). Manually segmented gold standard hippocampal tracings were available for all subjects (training and testing).
View Article and Find Full Text PDFWe used a new method we developed for automated hippocampal segmentation, called the auto context model, to analyze brain MRI scans of 400 subjects from the Alzheimer's disease neuroimaging initiative. After training the classifier on 21 hand-labeled expert segmentations, we created binary maps of the hippocampus for three age- and sex-matched groups: 100 subjects with Alzheimer's disease (AD), 200 with mild cognitive impairment (MCI) and 100 elderly controls (mean age: 75.84; SD: 6.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
June 2010
In this paper, we study the classification problem in the situation where large volumes of training data become available sequentially (online learning). In medical imaging, this is typical, e.g.
View Article and Find Full Text PDFAs one of the earliest structures to degenerate in Alzheimer's disease (AD), the hippocampus is the target of many studies of factors that influence rates of brain degeneration in the elderly. In one of the largest brain mapping studies to date, we mapped the 3D profile of hippocampal degeneration over time in 490 subjects scanned twice with brain MRI over a 1-year interval (980 scans). We examined baseline and 1-year follow-up scans of 97 AD subjects (49 males/48 females), 148 healthy control subjects (75 males/73 females), and 245 subjects with mild cognitive impairment (MCI; 160 males/85 females).
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
December 2008
Automatically segmenting subcortical structures in brain im ages has the potential to greatly accelerate drug trials and population studies of disease. Here we propose an automatic subcortical segmentation algorithm using the auto context model. Unlike many segmentation algorithms that separately compute a shape prior and an image appearance model, we develop a framework based on machine learning to learn a unified appearance and context model.
View Article and Find Full Text PDFWe introduce a new method for brain MRI segmentation, called the auto context model (ACM), to segment the hippocampus automatically in 3D T1-weighted structural brain MRI scans of subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In a training phase, our algorithm used 21 hand-labeled segmentations to learn a classification rule for hippocampal versus non-hippocampal regions using a modified AdaBoost method, based on approximately 18,000 features (image intensity, position, image curvatures, image gradients, tissue classification maps of gray/white matter and CSF, and mean, standard deviation, and Haar filters of size 1x1x1 to 7x7x7). We linearly registered all brains to a standard template to devise a basic shape prior to capture the global shape of the hippocampus, defined as the pointwise summation of all the training masks.
View Article and Find Full Text PDF