Programmable gene integration technologies are an emerging modality with exciting applications in both basic research and therapeutic development. Programmable addition via site-specific targeting elements (PASTE) is a programmable gene integration approach for precise and efficient programmable integration of large DNA sequences into the genome. PASTE offers improved editing efficiency, purity and programmability compared with previous methods for long insertions into the mammalian genome.
View Article and Find Full Text PDFDirected protein evolution is central to biomedical applications but faces challenges like experimental complexity, inefficient multi-property optimization, and local maxima traps. While methods using protein language models (PLMs) can provide modeled fitness landscape guidance, they struggle to generalize across diverse protein families and map to protein activity. We present EVOLVEpro, a few-shot active learning framework that combines PLMs and regression models to rapidly improve protein activity.
View Article and Find Full Text PDFFusion oncogenes can be cancer-defining molecular alterations that are essential for diagnosis and therapy selection.1,2 Rapid and accessible molecular diagnostics for fusion-driven leukemias such as acute promyelocytic leukemia (APL), Philadelphia chromosome-positive acute lymphoblastic leukemia, and chronic myeloid leukemia (CML) are unavailable, creating a barrier to timely diagnosis and effective targeted therapy in many health care settings, including community hospitals and low-resource environments. We developed CRISPR-based RNA-fusion transcript detection assays using SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) for the diagnosis of fusion-driven leukemias.
View Article and Find Full Text PDFRNA editing offers the opportunity to introduce either stable or transient modifications to nucleic acid sequence without permanent off-target effects, but installation of arbitrary edits into the transcriptome is currently infeasible. Here, we describe Programmable RNA Editing & Cleavage for Insertion, Substitution, and Erasure (PRECISE), a versatile RNA editing method for writing RNA of arbitrary length and sequence into existing pre-mRNAs via 5' or 3' trans-splicing. In trans-splicing, an exogenous template is introduced to compete with the endogenous pre-mRNA, allowing for replacement of upstream or downstream exon sequence.
View Article and Find Full Text PDFOur ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing.
View Article and Find Full Text PDFProgrammable RNA-guided DNA nucleases perform numerous roles in prokaryotes, but the extent of their spread outside prokaryotes is unclear. Fanzors, the eukaryotic homolog of prokaryotic TnpB proteins, have been detected in genomes of eukaryotes and large viruses, but their activity and functions in eukaryotes remain unknown. Here, we characterize Fanzors as RNA-programmable DNA endonucleases, using biochemical and cellular evidence.
View Article and Find Full Text PDFTnpB proteins are RNA-guided nucleases that are broadly associated with IS200/605 family transposons in prokaryotes. TnpB homologs, named Fanzors, have been detected in genomes of some eukaryotes and large viruses, but their activity and functions in eukaryotes remain unknown. We searched genomes of diverse eukaryotes and their viruses for TnpB homologs and identified numerous putative RNA-guided nucleases that are often associated with various transposases, suggesting they are encoded in mobile genetic elements.
View Article and Find Full Text PDFCRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit.
View Article and Find Full Text PDFTranscription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts.
View Article and Find Full Text PDFProgrammable genome integration of large, diverse DNA cargo without DNA repair of exposed DNA double-strand breaks remains an unsolved challenge in genome editing. We present programmable addition via site-specific targeting elements (PASTE), which uses a CRISPR-Cas9 nickase fused to both a reverse transcriptase and serine integrase for targeted genomic recruitment and integration of desired payloads. We demonstrate integration of sequences as large as ~36 kilobases at multiple genomic loci across three human cell lines, primary T cells and non-dividing primary human hepatocytes.
View Article and Find Full Text PDFIn prokaryotes, CRISPR-Cas systems provide adaptive immune responses against foreign genetic elements through RNA-guided nuclease activity. Recently, additional genes with non-nuclease functions have been found in genetic association with CRISPR systems, suggesting that there may be other RNA-guided non-nucleolytic enzymes. One such gene from encodes the TPR-CHAT protease Csx29, which is associated with the CRISPR effector Cas7-11.
View Article and Find Full Text PDFPoint-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection-such as multiplexed detection for viral variant surveillance-may limit their widespread adoption. Herein, we developed a robust multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)-including globally dominant VOCs Delta (B.1.
View Article and Find Full Text PDFProgrammable approaches to sense and respond to the presence of specific RNAs in biological systems have broad applications in research, diagnostics, and therapeutics. Here we engineer a programmable RNA-sensing technology, reprogrammable ADAR sensors (RADARS), which harnesses RNA editing by adenosine deaminases acting on RNA (ADAR) to gate translation of a cargo protein by the presence of endogenous RNA transcripts. Introduction of a stop codon in a guide upstream of the cargo makes translation contingent on binding of an endogenous transcript to the guide, leading to ADAR editing of the stop codon and allowing translational readthrough.
View Article and Find Full Text PDFThe type III-E CRISPR-Cas effector Cas7-11, with dual RNase activities for precursor CRISPR RNA (pre-crRNA) processing and crRNA-guided target RNA cleavage, is a new platform for bacterial and mammalian RNA targeting. We report the 2.5-Å resolution cryoelectron microscopy structure of Cas7-11 in complex with a crRNA and its target RNA.
View Article and Find Full Text PDFCRISPR-Cas interference is mediated by Cas effector nucleases that are either components of multisubunit complexes-in class 1 CRISPR-Cas systems-or domains of a single protein-in class 2 systems. Here we show that the subtype III-E effector Cas7-11 is a single-protein effector in the class 1 CRISPR-Cas systems originating from the fusion of a putative Cas11 domain and multiple Cas7 subunits that are derived from subtype III-D. Cas7-11 from Desulfonema ishimotonii (DiCas7-11), when expressed in Escherichia coli, has substantial RNA interference effectivity against mRNAs and bacteriophages.
View Article and Find Full Text PDFThe accurate and timely diagnosis of disease is a prerequisite for efficient therapeutic intervention and epidemiological surveillance. Diagnostics based on the detection of nucleic acids are among the most sensitive and specific, yet most such assays require costly equipment and trained personnel. Recent developments in diagnostic technologies, in particular those leveraging clustered regularly interspaced short palindromic repeats (CRISPR), aim to enable accurate testing at home, at the point of care and in the field.
View Article and Find Full Text PDFWe present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms.
View Article and Find Full Text PDF