Publications by authors named "Jonathan Goole"

The nose of the mammals is responsible for filtering, humidifying, and heating the air before entering the lower respiratory tract. This conditioning avoids, notably, dehydration of the bronchial and alveolar mucosa. However, since this conditioning is not perfect, exercising in cold air can induce lung inflammation, both for human and non-human mammals.

View Article and Find Full Text PDF

Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features.

View Article and Find Full Text PDF

Phage therapy is recognized to be a promising alternative to fight antibiotic-resistant infections. In the quest for oral dosage forms containing bacteriophages, the utilization of colonic-release Eudragit derivatives has shown potential in shielding bacteriophages from the challenges encountered within the gastrointestinal tract, such as fluctuating pH levels and the presence of digestive enzymes. Consequently, this study aimed to develop targeted oral delivery systems for bacteriophages, specifically focusing on colon delivery and employing Eudragit FS30D as the excipient.

View Article and Find Full Text PDF

Introduction: This work aimed to develop chitosan-coated cubosomal nanoparticles intended for nose-to-brain delivery of paliperidone palmitate. They were compared with standard and cationic cubosomal nanoparticles. This comparison relies on numerous classical in vitro tests and powder deposition within a 3D-printed nasal cast.

View Article and Find Full Text PDF

Validating numerical models against experimental models of nasal spray deposition is challenging since many aspects must be considered. That being said, it is a critical step in the product development process of nasal spray devices. This work presents the validation process of a nasal deposition model, which demonstrates a high degree of consistency of the numerical model with experimental data when the nasal cavity is segmented into two regions but not into three.

View Article and Find Full Text PDF

Nose-to-brain delivery is a promising way to reach the central nervous system with therapeutic drugs. However, the location of the olfactory region at the top of the nasal cavity complexifies this route of administration. In this study, we used a 3D-printed replica of a nasal cavity (a so-called "nasal cast") to reproduce the deposition of a solid powder.

View Article and Find Full Text PDF

Insomnia is a chronic disorder with a mean prevalence ranged from 6% to 15% worldwide. The usual pharmacologic treatment for insomnia has been benzodiazepines and barbiturates. More recently, z-drugs were introduced in the therapeutic arsenal to maximize benefits and minimize treatment damage.

View Article and Find Full Text PDF

Furosemide is a diuretic frequently used in the therapeutic management of edema associated with cardiac, renal, and hepatic failure and hypertension. However, there are a very low number of pharmaceutical dosage forms containing furosemide that are suitable for children under 6- years old. Therefore, there is a real need to develop hospital preparations, especially in the hospital.

View Article and Find Full Text PDF

In this work, two technologies were used to prepare long-acting implantable dosage forms in the treatment of schizophrenia. Hot-melt extrusion (HME) as well as fused deposition modelling (FDM) were used concomitantly to create personalized 3D printed implants. Different formulations were prepared using an amorphous PLA as matrix polymer and different solid-state plasticizers.

View Article and Find Full Text PDF
Article Synopsis
  • There is increasing interest in using 3D printing for creating drug delivery systems tailored to diverse patient needs, particularly for immediate-release forms.
  • This study specifically examines long-acting dosage forms for neurological diseases, using paliperidone palmitate as a model drug and varying printing parameters such as layer thickness and infill percentage.
  • The research focuses on developing a prediction system for drug release based on surface area and volume ratio, moving away from fixed geometries to allow for more complex designs in drug delivery.
View Article and Find Full Text PDF

In the present study, we evaluated the effect of spray-drying formulations and operating parameters of a laboratory-scale spray-dryer on the characteristics of spray-dried powders containing two bacteriophages exhibiting different morphotypes: a podovirus (LUZ19) and a myovirus (14-1). We optimized the production process for bacteriophage-loaded powders, with an emphasis on long-term storage under ICH (international conference on harmonization) conditions. D-trehalose-/L-isoleucine-containing bacteriophage mixtures were spray-dried from aqueous solutions using a Büchi Mini Spray-dryer B-290 (Flawil, Switzerland).

View Article and Find Full Text PDF

This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it.

View Article and Find Full Text PDF

In this work, the versatility of pressure extrusion-based printing (PEBP) was used as 3D printing process to create long-acting implantable dosage forms. Different release profiles were achieved based on the drug concentration, the way of preparation and the design of the final implants. Polycaprolactone (PCL) was used as the polymer to sustain the release of the loaded drug.

View Article and Find Full Text PDF

The interest in nano-sized lipid vesicles in nano-biotechnology relies on their use as mimics for endosomes, exosomes, and nanocarriers for drug delivery. The interactions between nanoscale size lipid vesicles and cell membranes involve spontaneous interbilayer lipid transfer by several mechanisms, such as monomer transfer or hemifusion. Experimental approaches toward monitoring lipid transfer between nanoscale-sized vesicles typically consist of transfer assays by fluorescence microscopy requiring the use of labels or calorimetric measurements, which in turn require a large amount of sample.

View Article and Find Full Text PDF

Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g.

View Article and Find Full Text PDF

The purpose of this work was to investigate the feasibility to manufacture enteric capsules, which could be used in compounding pharmacies, by fused-deposition modeling. It is well-known that conventional enteric dip coating of capsules in community pharmacies or hospitals is a time-consuming process which is characterized by an erratic efficacy. Fused-deposition modeling was selected as a potential 3D printing method due its ease and low-cost implementation.

View Article and Find Full Text PDF
Article Synopsis
  • Modified-release oral dosage forms are being developed to improve medication compliance for patients who have difficulty swallowing, like children and the elderly.
  • A new technology was created using multi-layered particles suspended in syrup with omeprazole, achieving over 90% yield and optimal size for use.
  • This system ensures drug stability and controlled release, mimicking traditional enteric-coated tablets while allowing up to 10 doses to be stored at room temperature.
View Article and Find Full Text PDF

In this study, the possibility of producing highly antibody-loaded microparticles with sustained-release properties was evaluated. Polyclonal immunoglobulin G (IgG) was used as a model of antibody and its encapsulation into poly(lactide-co-glycolide) acid (PLGA) microparticles was performed by spray-drying a water-in-oil (w/o) emulsion. It was demonstrated that the use of the Resomer RG505 PLGA allowed an IgG loading of 20% w/w with an encapsulation efficiency higher than 85%.

View Article and Find Full Text PDF

Nasal delivery offers many benefits over other conventional routes of delivery (e.g. oral or intravenous administration).

View Article and Find Full Text PDF

The nose-to-brain delivery of ghrelin loaded in liposomes is a promising approach for the management of cachexia. It could limit the plasmatic degradation of ghrelin and provide direct access to the brain, where ghrelin's specific receptors are located. Anionic liposomes coated with chitosan in either a liquid or a dry-powder formulation were compared.

View Article and Find Full Text PDF

The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose-brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.

View Article and Find Full Text PDF

Labile ligands such as thiols and carboxylates are commonly used to functionalize AuNPs, though little control over the composition is possible when mixtures of ligands are used. It was shown recently that robustly functionalized AuNPs can be obtained through the reductive grafting of calix[4]arenes bearing diazonium groups on the large rim. Here, we report a calix[4]arene-tetradiazonium decorated by four oligo(ethylene glycol) chains on the small rim, which upon grafting gave AuNPs with excellent stability thanks to the C-Au bonds.

View Article and Find Full Text PDF

Three-dimensional printing includes a wide variety of manufacturing techniques, which are all based on digitally-controlled depositing of materials (layer-by-layer) to create freeform geometries. Therefore, three-dimensional printing processes are commonly associated with freeform fabrication techniques. For years, these methods were extensively used in the field of biomanufacturing (especially for bone and tissue engineering) to produce sophisticated and tailor-made scaffolds from patient scans.

View Article and Find Full Text PDF

Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate.

View Article and Find Full Text PDF