The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats.
View Article and Find Full Text PDFPyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented.
View Article and Find Full Text PDFBackground And Aims: The successful plant Fallopia × bohemica presents interesting capacities for control of the soil nitrogen cycle at the adult stage, termed biological inhibition of denitrification (BDI). The BDI strategy allows the plant, via the production of secondary metabolites (procyanidins), to compete with the denitrifying microbial community and to divert nitrate from the soil for its benefit. In this study, we analysed whether seedlings of F.
View Article and Find Full Text PDFSavannas are characterized by the coexistence of grasses and trees. Fires are critical for their coexistence, because they decrease the survival of tree seedlings and saplings and their recruitment to the adult stage. In some humid savannas, perennial grasses inhibit nitrification and trees stimulate nitrification, which likely favors coexistence between trees and grasses.
View Article and Find Full Text PDFAlthough widely used in ecology, trait-based approaches are seldom used to study agroecosystems. In particular, there is a need to evaluate how functional trait variability among varieties of a crop species compares to the variability among wild plant species and how variety selection can modify trait syndromes. Here, we quantified 18 above- and below-ground functional traits for 57 varieties of common wheat representative of different modern selection histories.
View Article and Find Full Text PDFMangrove forests are coastal ecosystems continuously affected by various environmental stresses and organized along constraint gradients perpendicular to the coastline. The aim of this study was to evaluate the resistance and resilience of sediment microbial communities in contrasted vegetation facies, during and after exposure to an anthropic disturbance. Our hypothesis was that microbial communities should be the most stable in the facies where the consequences of the anthropic disturbance are the most similar to those of natural disturbances.
View Article and Find Full Text PDFMetal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.
View Article and Find Full Text PDFThe moist savanna zone covers 0.5 × 10 km in West Africa and is characterized by very low soil N levels limiting primary production, but the ecology of nitrifiers in these (agro)ecosystems is largely unknown. We compared the effects of six agricultural practices on nitrifier activity, abundance and diversity at nine sites in central Ivory Coast.
View Article and Find Full Text PDFMaize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms.
View Article and Find Full Text PDF