Publications by authors named "Jonathan G Terry"

Our previous work has established that micron-resolution photolithography can be employed to make microsquare nanoband edge electrode (MNEE) arrays. The MNEE configuration enables systematic control of the parameters (electrode number, cavity array spacing, and nanoelectrode dimensions and placement) that control geometry, conferring a consistent high-fidelity electrode response across the array (, high signal, high signal-to-noise, low limits of detection and fast, steady-state, reproducible and quantitative response) and allowing the tuning of individual and combined electrode interactions. Building on this, in this paper we now produce and characterise a micropore nanoband electrode (MNE) array designed for flow-through detection, where an MNEE edge electrode configuration is used to form a nanotube electrode embedded in the wall of each micropore, formed as an array of pores of controlled size and placement through an insulating membrane of sub-micrometer thickness.

View Article and Find Full Text PDF

The development of robust implantable sensors is important in the successful advancement of personalised medicine as they have the potential to provide in situ real-time data regarding the status of health and disease and the effectiveness of treatment. Tissue pH is a key physiological parameter and herein, we report the design, fabrication, functionalisation, encapsulation and protection of a miniaturised, self-contained, electrochemical pH sensor system and characterisation of sensor performance. Notably for the first time in this environment the pH sensor was based on a methylene blue redox reporter which showed remarkable robustness, accuracy and sensitivity.

View Article and Find Full Text PDF

For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses.

View Article and Find Full Text PDF

Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification.

View Article and Find Full Text PDF

Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems.

View Article and Find Full Text PDF

Micron resolution photolithography has been employed to make microsquare nanoband edge electrode (MNEE) arrays with reproducible and systematic control of the crucial dimensional parameters, including array element size and spacing and nanoelectrode thickness. The response of these arrays, which can be reproducibly fabricated on a commercial scale, is first established. The resulting characteristics (including high signal and signal-to-noise, low limit of detection, insensitivity to external convection and fast, steady-state, reproducible and quantitative response) make such nanoband electrode arrays of real interest as enhanced electroanalytical devices.

View Article and Find Full Text PDF

A novel technique for the production of nanoscale electrode arrays that uses standard microfabrication processes and micron-scale photolithography is reported here in detail. These microsquare nanoband edge electrode (MNEE) arrays have been fabricated with highly reproducible control of the key array dimensions, including the size and pitch of the individual elements and, most importantly, the width of the nanoband electrodes. The definition of lateral features to nanoscale dimensions typically requires expensive patterning techniques that are complex and low-throughput.

View Article and Find Full Text PDF

The performance of two electrode architectures with broadly similar overall active electrode areas are examined. The first is an electrode comprising a single contiguous area (a disc) and the second is an electrode in which the cumulative electrode area is dispersed over a wide area as a 50 nm thickness platinum nanoband. A direct comparison of the electrochemical performance of these two electrodes has been made.

View Article and Find Full Text PDF

Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe sequence.

View Article and Find Full Text PDF

A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and N-3-oxo-dodecanoyl-l-HomoSerineLactone (HSL), relevant in bacterial quorum sensing, is detected using a competition assay. Detection is performed with gold screen-printed electrodes modified with a specific thiolated antibody.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major cause of chronic liver disease and liver cancer, and remains a large health care burden to the world. In this study we developed a DNA microarray test to detect HCV RNA and a protein microarray to detect human anti-HCV antibodies on a single platform. A main focus of this study was to evaluate possibilities to reduce the assay time, as a short time-to-result (TTR) is a prerequisite for a point-of-care test.

View Article and Find Full Text PDF

The manipulation of ribosomal RNA (rRNA) extracted from E. coli cells by dielectrophoresis (DEP) has been demonstrated over the range of 3 kHz-50 MHz using interdigitated microelectrodes. Quantitative measurement using total internal reflection fluorescence microscopy of the time dependent collection indicated a positive DEP response characterized by a plateau between 3 kHz and 1 MHz followed by a decrease in response at higher frequencies.

View Article and Find Full Text PDF

DNA microarrays are powerful tools for gene expression analysis and genotyping studies in research and diagnostic applications. A high sensitivity and short time-to-result are prerequisites for their practical application in the clinic. The hybridization efficiency of DNA microarrays depends on the probe density and the probe orientation and thus their accessibility for target molecules.

View Article and Find Full Text PDF

Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive, under investigated, yet vital in determining the optimal number of biomarkers for various classification purposes aimed towards improved detection, diagnosis, and therapeutic monitoring of diseases. We investigate the impact of microarray based data characteristics on the predictive performance for various classification rules using simulation studies.

View Article and Find Full Text PDF

This paper outlines the systematic production and characterisation of biocompatible square microfabricated electrode systems for electroanalysis. In contrast to previous results, a combination of simulation, theoretical analysis and measurement has established that there is an enhanced current density for a microsquare electrode under mass transport limiting current conditions when compared to a microdisc of equivalent size. This is not simply due to a difference in the effective areas of the electrodes as the difference is frequency (diffusion layer thickness) dependent; it can instead be attributed to the effects of enhanced diffusion at the corners of the microsquares on the growing diffusion layer.

View Article and Find Full Text PDF

DNA nanoswitches can be designed to detect unlabelled nucleic acid targets and have been shown to discriminate between targets which differ in the identity of only one base. This paper demonstrates that the fluorescent base analogue 2-aminopurine (AP) can be used to discriminate between nanoswitches with and without targets and to discriminate between matched and mismatched targets. In particular, we have used both steady-state and time-resolved fluorescence spectroscopy to determine differences in AP environment at the branchpoint of nanoswitches assembled using complementary targets and targets which incorporate single base mismatches.

View Article and Find Full Text PDF

Quantum dot (QD) labeling combined with fluorescence lifetime imaging microscopy is proposed as a powerful transduction technique for the detection of DNA hybridization events. Fluorescence lifetime analysis of DNA microarray spots of hybridized QD labeled target indicated a characteristic lifetime value of 18.8 ns, compared to 13.

View Article and Find Full Text PDF

We present a new type of DNA switch, based on the Holliday junction, that uses a combination of binding and conformational switching to enable specific label-free detection of DNA and RNA. We show that a single RNA oligonucleotide species can be detected in a complex mixture of extracted cellular RNA and demonstrate that by exploiting different aspects of the switch characteristics we can achieve 30-fold discrimination between single-nucleotide mismatches in a DNA oligonucleotide.

View Article and Find Full Text PDF

This work reports how the use of a standard integrated circuit (IC) fabrication process can improve the potential of silicon nitride layers as substrates for microarray technology. It has been shown that chemical mechanical polishing (CMP) substantially improves the fluorescent intensity of positive control gene and test gene microarray spots on both low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films, while maintaining a low fluorescent background. This results in the improved discrimination of low expressing genes.

View Article and Find Full Text PDF