Publications by authors named "Jonathan Foley"

Experimental demonstrations of modified chemical structure and reactivity under strong light-matter coupling have spurred theoretical and computational efforts to uncover underlying mechanisms. Ab initio cavity quantum electrodynamics (QED) combines quantum chemistry with cavity QED to investigate these phenomena in detail. Unitary transformations of ab initio cavity QED Hamiltonians have been used to make them more computationally tractable.

View Article and Find Full Text PDF

Molecules under strong or ultra-strong light-matter coupling present an intriguing route to modify chemical structure, properties, and reactivity. A rigorous theoretical treatment of such systems requires handling matter and photon degrees of freedom on an equal quantum mechanical footing. In the regime of molecular electronic strong or ultra-strong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach referred to as ab initio cavity quantum electrodynamics (ai-QED), where the photon degrees of freedom are treated at the level of cavity QED.

View Article and Find Full Text PDF

The emerging field of polaritonic chemistry explores the behavior of molecules under strong coupling with cavity modes. Despite recent developments in polaritonic methods for simulating polaritonic chemistry under electronic strong coupling, their capabilities are limited, especially in cases where the molecule also features strong electronic correlation. To bridge this gap, we have developed a novel method for cavity QED calculations utilizing the Density Matrix Renormalization Group (DMRG) algorithm in conjunction with the Pauli-Fierz Hamiltonian.

View Article and Find Full Text PDF

We calculate, using time-dependent density functional theory, absorption and circular dichroism (CD) spectra for a series of small helical gold nanorod structures with a width of 0.6 nm and length increasing from 0.7 nm for Au to 1.

View Article and Find Full Text PDF

Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of quantum chemistry, yielding an approach we refer to as cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics.

View Article and Find Full Text PDF

There is a growing demand for new fluorescent small molecule dyes for solid state applications in the photonics and optoelectronics industry. Thiazolo[5,4-]thiazole (TTz) is an organic heterocycle moiety which has previously shown remarkable properties as a conjugated polymer and in solution-based studies. For TTz-based small molecules to be incorporated in solid-state fluorescence-based optical devices, a thorough elucidation of their structure-photophysical properties needs to be established.

View Article and Find Full Text PDF

Acute lung injury in COVID-19 results in diffuse alveolar damage with disruption of the alveolar-capillary barrier, coagulation activation, alveolar fibrin deposition and pulmonary capillary thrombi. Nebulized recombinant tissue plasminogen activator (rt-PA) has the potential to facilitate localized thrombolysis in the alveolar compartment and improve oxygenation. In this proof-of-concept safety study, adults with COVID-19-induced respiratory failure and a <300 mmHg PaO/FiO (P/F) ratio requiring invasive mechanical ventilation (IMV) or non-invasive respiratory support (NIRS) received nebulized rt-PA in two cohorts (C1 and C2), alongside standard of care, between 23 April-30 July 2020 and 21 January-19 February 2021, respectively.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) gene therapy has the potential to functionally cure hemophilia B by restoring factor (F)IX concentrations into the normal range. Next-generation AAV therapies express a naturally occurring gain-of-function FIX variant, FIX-Padua (R338L-FIX), that increases FIX activity (FIX:C) by approximately eightfold compared with wild-type FIX (FIX-WT). Previous studies have shown that R338L-FIX activity varies dramatically across different clinical FIX:C assays, which complicates the monitoring and management of patients.

View Article and Find Full Text PDF

We combine ab initio molecular electronic Hamiltonians with a cavity quantum electrodynamics model for dissipative photonic modes and apply mean-field theories to the ground- and excited-states of resulting polaritonic systems. In particular, we develop a non-Hermitian configuration interaction singles theory for mean-field ground- and excited-states of the molecular system strongly interacting with a photonic mode and apply these methods to elucidating the phenomenology of paradigmatic polaritonic systems. We leverage the Psi4Numpy framework to yield open-source and accessible reference implementations of these methods.

View Article and Find Full Text PDF

The climate crisis threatens to exacerbate numerous climate-sensitive health risks, including heatwave mortality, malnutrition from reduced crop yields, water- and vector-borne infectious diseases, and respiratory illness from smog, ozone, allergenic pollen, and wildfires. Recent reports from the Intergovernmental Panel on Climate Change stress the urgent need for action to mitigate climate change, underscoring the need for more scientific assessment of the benefits of climate action for health and wellbeing. Project Drawdown has analyzed more than 80 solutions to address climate change, building on existing technologies and practices, that could be scaled to collectively limit warming to between 1.

View Article and Find Full Text PDF

The influence of external dielectric environments is well understood for 2D semiconductor materials but overlooked for colloidally grown II-VI nanoplatelets (NPLs). In this work, we synthesize MX (M = Cd, Hg; X = Se, Te) NPLs of varying thicknesses and apply the Elliott model to extract exciton binding energies-reporting values in good agreement with prior methods and extending to less studied cadmium telluride and mercury chalcogenide NPLs. We find that the exciton binding energy is modulated both by the relative effect of internal vs external dielectric and by the thickness of the semiconductor material.

View Article and Find Full Text PDF

Thrombin generation is pivotal to both physiological blood clot formation and pathological development of disseminated intravascular coagulation (DIC). In critical illness, extensive cell damage can release histones into the circulation, which can increase thrombin generation and cause DIC, but the molecular mechanism is not clear. Typically, thrombin is generated by the prothrombinase complex, comprising activated factor X (FXa), activated cofactor V (FVa), and phospholipids to cleave prothrombin in the presence of calcium.

View Article and Find Full Text PDF

We present a non-Hermitian formulation of the polaritonic structure of azobenzene strongly coupled to a photonic mode that explicitly accounts for the fleeting nature of the photon-molecule interaction. This formalism reveals that the polaritonic nonadiabatic couplings that facilitate cis-trans isomerization can be dramatically modified by photonic dissipation. We perform Fewest-Switches Surface Hopping dynamics on the surfaces that derive from our non-Hermitian formalism and find that the polaritonic isomerization yields are strongly suppressed for moderate dissipation rates and that cavity-free isomerization dynamics are recovered under large dissipation rates.

View Article and Find Full Text PDF

Background: Impaired thrombin generation (TG) in patients with acquired coagulopathy, is due to low coagulation factors and thrombocytopenia. The latter is typically treated with platelet transfusions and the former with plasma and occasionally with prothrombin complex concentrates (PCCs). We hypothesized that manipulating the concentrations of coagulation factors might result in restoration of platelet-dependent TG over and above that of simple replacement therapy.

View Article and Find Full Text PDF

The efficiency of a thermophotovoltaic (TPV) system depends critically upon the spectral selectivity and stability of an emitter, which may operate most effectively at temperatures in excess of 1000 °C. We computationally design and experimentally demonstrate a novel selective emitter design based on multilayer nanostructures, robust to off-normal emission angles. A computational search of the material and temperature compatibility space of simple emitter designs motivates new material classes and identifies several promising multilayer nanostructure designs for both TPV absorber and emitter applications.

View Article and Find Full Text PDF

Balancing gene expression is a fundamental challenge of all cell types. To properly regulate transcription on a genome-wide level, there are myriad mechanisms employed by the cell. One layer to this regulation is through spatial positioning, with particular chromosomal loci exerting an influence on transcription throughout a region.

View Article and Find Full Text PDF

This paper reviews the effect of a primary care financing scheme introduced in New Zealand as a component of the New Zealand Primary Health Care Strategy, a comprehensive reform of the way that primary healthcare was governed, financed and delivered. The population-based funding formulae incorporated an area-based measure of social deprivation and ethnicity in an explicit attempt to improve access to care for certain population groups and fund social interventions aimed at addressing conditions that lead to improved health outcomes. The New Zealand experience shows that introducing a nationwide, comprehensive program to improve access and reduce health disparities is possible.

View Article and Find Full Text PDF

It is essential that cells orchestrate gene expression for the specific niche that they occupy, and this often requires coordination of the expression of large sets of genes. There are multiple regulatory systems that exist for modulation of gene expression, including the adjacent-gene coregulation of the rRNA and ribosome biogenesis and ribosomal protein families. Both gene families exhibit a nonrandom genomic distribution, often clustered directly adjacent to another member of the same family, which results in a tighter transcriptional coordination among adjacent paired genes than that of the unpaired genes within each regulon and can result in a shared promoter that coordinates expression of the pairs.

View Article and Find Full Text PDF

Introduction: Health inequities persist in Canada and the United States. Both countries show differential health status and health care quality by social characteristics, making zip or postal code a greater predictor of health than genetics. Many social determinants of health overlap in the same individuals or communities, exacerbating their vulnerability.

View Article and Find Full Text PDF

The diverse mechanisms by which the plasmin(ogen) system is involved in human physiology and pathology are constantly being delineated. For many years, the plasmin(ogen) system was chiefly known as the system responsible for vascular fibrinolysis. Although this is an important function of the plasmin(ogen) system, we now recognize that plasmin(ogen) is critically important as a mediator of inflammation and the innate immune system, which impacts upon a diverse set of mechanisms underlying the pathologies of many diseases.

View Article and Find Full Text PDF

The coagulation and complement systems are ancestrally related enzymatic cascades of the blood. Although their primary purposes have diverged over the past few hundred million years, they remain inextricably connected. Both complement and coagulation systems limit infection by pathogens through innate immune mechanisms.

View Article and Find Full Text PDF

The procoagulant activity (PA) of stored units of red blood cells (RBC) increases over time, which is related to the expression/exposure of tissue factor (TF). However, there is a discrepancy between the TF measured and changes in PA observed, suggesting that other blood components contribute to this activity. Our goal was to evaluate changes in PA of stored RBCs and to determine possible contributors to it.

View Article and Find Full Text PDF