Publications by authors named "Jonathan FitzGerald"

Paclitaxel (Taxol) is a cornerstone of cancer treatment. However, its mechanism of cytotoxicity is incompletely understood and not all patients benefit from treatment. We show that patients with breast cancer did not accumulate sufficient intratumoral paclitaxel to induce mitotic arrest in tumor cells.

View Article and Find Full Text PDF

Purpose: Hypoxia is linked to aggressiveness, resistance to therapy, and poor prognosis of pancreatic tumors. Liposomal irinotecan (nal-IRI, ONIVYDE®) has shown potential in reducing hypoxia in the HT29 colorectal cancer model, and here, we investigate its therapeutic activity and ability to modulate hypoxia in patient-derived orthotopic tumor models of pancreatic cancer.

Procedures: Mice were randomized into nal-IRI treated and untreated controls.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) represents a significant therapeutic challenge due to its highly aggressive nature and lack of effective treatment options. Liposomal irinotecan (nal-IRI, ONIVYDE) was approved in 2015 (by the Food and Drug Administration, European Medicines Agency, and Therapeutic Goods Administration) and is a topoisomerase inhibitor indicated, in combination with fluorouracil and leucovorin, for the treatment of patients with metastatic adenocarcinoma of the pancreas after disease progression following gemcitabine-based therapy. This study investigates the potential therapeutic benefit of nal-IRI for the treatment of advanced TNBC in a clinically relevant mouse model of spontaneous metastasis (LM2-4).

View Article and Find Full Text PDF

Deposition of liposomal drugs into solid tumors is a potentially rate-limiting step for drug delivery and has substantial variability that may influence probability of response. Tumor deposition is a shared mechanism for liposomal therapeutics such that a single companion diagnostic agent may have utility in predicting response to multiple nanomedicines. We describe the development, characterization and preclinical proof-of-concept of the positron emission tomography (PET) agent, MM-DX-929, a drug-free untargeted 100 nm PEGylated liposome stably entrapping a chelated complex of 4-DEAP-ATSC and Cu (copper-64).

View Article and Find Full Text PDF

Physiologic barriers to drug delivery and selection for drug resistance limit survival outcomes in cancer patients. In this study, we present preclinical evidence that a subtumoricidal photodynamic priming (PDP) strategy can relieve drug delivery barriers in the tumor microenvironment to safely widen the therapeutic window of a nanoformulated cytotoxic drug. In orthotopic xenograft models of pancreatic cancer, combining PDP with nanoliposomal irinotecan (nal-IRI) prevented tumor relapse, reduced metastasis, and increased both progression-free survival and 1-year disease-free survival.

View Article and Find Full Text PDF

Liposomal irinotecan (irinotecan liposome injection, nal-IRI), a liposomal formulation of irinotecan, is designed for extended circulation relative to irinotecan and for exploiting discontinuous tumor vasculature for enhanced drug delivery to tumors. Following tumor deposition, nal-IRI is taken up by phagocytic cells followed by irinotecan release and conversion to its active metabolite, SN-38. Sustained inhibition of topoisomerase 1 by extended SN-38 exposure as a result of delivery by nal-IRI is hypothesized to enable superior antitumor activity compared with traditional topoisomerase 1 inhibitors such as conventional irinotecan and topotecan.

View Article and Find Full Text PDF

The ErbB family of receptor tyrosine kinases comprises four members: epidermal growth factor receptor (EGFR/ErbB1), human EGFR 2 (HER2/ErbB2), ErbB3/HER3, and ErbB4/HER4. The first two members of this family, EGFR and HER2, have been implicated in tumorigenesis and cancer progression for several decades, and numerous drugs have now been approved that target these two proteins. Less attention, however, has been paid to the role of this family in mediating cancer cell survival and drug tolerance.

View Article and Find Full Text PDF

Purpose: Preclinical activity of irinotecan has been seen in glioma models, but only modest efficacy has been noted in clinical studies, perhaps related to drug distribution and/or pharmacokinetic limitations. In preclinical testing, irinotecan liposome injection (nal-IRI) results in prolongation of drug exposure and higher tissue levels of drug due to slower metabolism and the effect of enhanced permeability and retention. The objective of the current study was to assess the safety and pharmacokinetics (PK) of nal-IRI and to determine the maximum tolerated dose (MTD) in patients with recurrent high-grade glioma stratified based on UGT1A1 genotyping.

View Article and Find Full Text PDF

To determine whether deposition characteristics of ferumoxytol (FMX) iron nanoparticles in tumors, identified by quantitative MRI, may predict tumor lesion response to nanoliposomal irinotecan (nal-IRI). Eligible patients with previously treated solid tumors had FMX-MRI scans before and following (1, 24, and 72 hours) FMX injection. After MRI acquisition, R2* signal was used to calculate FMX levels in plasma, reference tissue, and tumor lesions by comparison with a phantom-based standard curve.

View Article and Find Full Text PDF

Background: Non-invasive measurement of tumor hypoxia has demonstrated potential for the evaluation of disease progression, as well as prediction and assessment of treatment outcome. [(18)F]fluoroazomycin arabinoside (FAZA) positron emission tomography (PET) has been identified as a robust method for quantification of hypoxia both preclinically and clinically. The goal of this investigation was to evaluate the feasibility and value of repeated FAZA-PET imaging to quantify hypoxia in tumors that received multi-dose chemotherapy.

View Article and Find Full Text PDF

Although EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions.

View Article and Find Full Text PDF

Purpose: To determine the pharmacokinetics and the antitumor activity in pediatric cancer models of MM-398, a nanoliposomal irinotecan (nal-IRI).

Experimental Design: Mouse plasma and tissue pharmacokinetics of nal-IRI and the current clinical formulation of irinotecan were characterized. In vivo activity of irinotecan and nal-IRI was compared in xenograft models (3 each in nu/nu mice) of Ewing's sarcoma family of tumors (EFT), neuroblastoma (NB), and rhabdomyosarcoma (RMS).

View Article and Find Full Text PDF

A major challenge in the clinical use of cytotoxic chemotherapeutics is maximizing efficacy in tumors while sparing normal tissue. Irinotecan is used for colorectal cancer treatment but the extent of its use is limited by toxic side effects. Liposomal delivery systems offer tools to modify pharmacokinetic and safety profiles of cytotoxic drugs.

View Article and Find Full Text PDF

Background: Resolution is the final stage of the inflammatory response, when restoration of tissue occurs. Failure may lead to chronic inflammation, which is known as part of the pathology in the brain of individuals with Alzheimer's disease (AD).

Methods: Specialized pro-resolving mediators (SPMs), receptors, biosynthetic enzyme, and downstream effectors involved in resolution were analyzed in postmortem hippocampal tissue from AD patients and non-AD subjects.

View Article and Find Full Text PDF

Although inhibition of the insulin-like growth factor (IGF) signaling pathway was expected to eliminate a key resistance mechanism for EGF receptor (EGFR)-driven cancers, the effectiveness of IGF-I receptor (IGF-IR) inhibitors in clinical trials has been limited. A multiplicity of survival mechanisms are available to cancer cells. Both IGF-IR and the ErbB3 receptor activate the PI3K/AKT/mTOR axis, but ErbB3 has only recently been pursued as a therapeutic target.

View Article and Find Full Text PDF

Parenteral nutrition (PN)-associated liver disease (PNALD) is a life-threatening complication of the administration of PN. The development of PNALD may be partly due to the composition of the lipid emulsion administered with PN: soybean oil-based lipid emulsions (SOLE) are associated with liver disease, while fish oil-based lipid emulsions (FOLE) are associated with prevention and improvement of liver disease. The objective of this study was to determine how the choice of lipid emulsion modified the production of bioactive lipid mediators (LMs).

View Article and Find Full Text PDF
Article Synopsis
  • CYP1 monooxygenases are involved in the biosynthesis and inactivation of lipid mediators, but their specific metabolic roles are not fully understood. Researchers used advanced techniques to analyze lipid mediator profiles in knockout mice lacking CYP1 genes compared to wild-type mice.
  • In the absence of CYP1 enzymes, no significant differences in untreated mice were observed regarding cell counts or CYP1 activity; however, during inflammation induced by zymosan, knockout mice displayed increased neutrophil recruitment and altered levels of various lipid mediators.
  • The study found significant changes in the metabolomic profiles of lipid mediators due to zymosan stimulation, revealing that CYP1 enzymes play a critical role in regulating these mediators and influencing
View Article and Find Full Text PDF

Recent evidence suggests that specialized lipid mediators derived from polyunsaturated fatty acids control resolution of inflammation, but little is known about resolution pathways in vascular injury. We sought to determine the actions of D-series resolvin (RvD) on vascular smooth muscle cell (VSMC) phenotype and vascular injury. Human VSMCs were treated with RvD1 and RvD2, and phenotype was assessed by proliferation, migration, monocyte adhesion, superoxide production, and gene expression assays.

View Article and Find Full Text PDF

Multispecific antibody-like molecules have the potential to advance the standard-of-care in many human diseases. The design of therapeutic molecules in this class, however, has proven to be difficult and, despite significant successes in preclinical research, only one trivalent antibody, catumaxomab, has demonstrated clinical utility. The challenge originates from the complexity of the design space where multiple parameters such as affinity, avidity, effector functions, and pharmaceutical properties need to be engineered in concurrent fashion to achieve the desired therapeutic efficacy.

View Article and Find Full Text PDF

Background: Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of importance with respect to the treatment of central nervous system cancer, for which the blood-brain barrier presents a significant challenge in achieving sufficient drug concentration in tumors to provide treatment benefit for patients.

View Article and Find Full Text PDF

Monoclonal antibodies have significantly advanced our ability to treat cancer, yet clinical studies have shown that many patients do not adequately respond to monospecific therapy. This is in part due to the multifactorial nature of the disease, where tumors rely on multiple and often redundant pathways for proliferation. Bi- or multi- specific antibodies capable of blocking multiple growth and survival pathways at once have a potential to better meet the challenge of blocking cancer growth, and indeed many of them are advancing in clinical development.

View Article and Find Full Text PDF

The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB-phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor).

View Article and Find Full Text PDF

We present a case of pericardial tamponade caused by hypothyroidism. A 66-year-old man presented with acute chest pain radiating to the back. Computed tomography ruled out an aortic dissection but revealed a large pericardial effusion, which was confirmed on transthoracic echocardiography showing features of tamponade.

View Article and Find Full Text PDF

The parental conflict hypothesis predicts that the mother inhibits embryo growth counteracting growth enhancement by the father. In plants the DNA methyltransferase MET1 is a central regulator of parentally imprinted genes that affect seed growth. However the relation between the role of MET1 in imprinting and its control of seed size has remained unclear.

View Article and Find Full Text PDF