Publications by authors named "Jonathan Espiritu"

The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti).

View Article and Find Full Text PDF

An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market. A hierarchical analysis of bone remodelling after material implantation is necessary to better understand the relationship between implant and bone. Osteocytes, which are housed and communicate through the lacuno-canalicular network (LCN), are integral to bone health and remodelling processes.

View Article and Find Full Text PDF

Magnesium (Mg)-based implants have re-emerged in orthopaedic surgery as an alternative to permanent implants. Literature reveals little information on how the degradation of biodegradable implants may introduce safety implications for patient follow-up using medical imaging. Magnetic resonance imaging (MRI) benefits post-surgery monitoring of bone healing and implantation sites.

View Article and Find Full Text PDF

Magnesium (Mg) implants have shown to cause image artefacts or distortions in magnetic resonance imaging (MRI). Yet, there is a lack of information on how the degradation of Mg-based implants influences the image quality of MRI examinations. In this study, Mg-based implants are analysed and in the clinical setting for various magnetic field strengths with the aim to quantify metallic artefact behaviour.

View Article and Find Full Text PDF

Magnesium-based implants are re-emerging as a substantial amendment to standard orthopaedic implants. A brief introduction of magnesium (Mg) as a biodegradable material and basic magnetic resonance imaging (MRI) principles are discussed. This review aims to highlight the current performance of these implants during examinations with MRI.

View Article and Find Full Text PDF