Publications by authors named "Jonathan Epp"

Introduction: Not all individuals who experience mild cognitive impairment (MCI) transition through progressive stages of cognitive decline at the same rate, if at all. Previous observational studies have identified the retrosplenial cortex (RSC) as an early site of hypometabolism in MCI which seems to be predictive of later transition to Alzheimer's disease (AD).

Methods: We examined N = 399 MCI subjects with baseline F-fluorodeoxyglucose positron emission tomography.

View Article and Find Full Text PDF

Aerobic exercise has many effects on brain function, particularly at the hippocampus. Exercise has been shown to increase the rate of adult neurogenesis within the dentate gyrus and decrease the density of perineuronal nets in area CA1. The relationship between the rate of neurogenesis and the density of perineuronal nets in CA1 is robust; however, these studies only ever examined these effects across longer time scales, with running manipulations of 4 weeks or longer.

View Article and Find Full Text PDF

Background: Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early-life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress.

View Article and Find Full Text PDF

Voluntary wheel running is a common measure of general activity in many rodent models across neuroscience and physiology. However, current commercial wheel monitoring systems can be cost-prohibitive to many investigators, with many of these systems requiring investments of thousands of dollars. In recent years, several open-source alternatives have been developed, and while these tools are much more cost effective than commercial system, they often lack the flexibility to be applied to a wide variety of projects.

View Article and Find Full Text PDF

Fiber photometry offers insight into cell-type-specific activity underlying social interactions. We provide a protocol for the integration of fiber photometry recordings into the analysis of social behavior in rodent models. This includes considerations during surgery, notes on synchronizing fiber photometry with behavioral recordings, advice on using multi-animal behavioral tracking software, and scripts for the analysis of fiber photometry recordings.

View Article and Find Full Text PDF

Comorbidities during the period between seizures present a significant challenge for individuals with epilepsy. Despite their clinical relevance, the pathophysiology of the interictal symptomatology is largely unknown. Postictal severe hypoxia (PIH) in those brain regions participating in the seizure has been indicated as a mechanism underlying several negative postictal manifestations.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV).

View Article and Find Full Text PDF

The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear.

View Article and Find Full Text PDF

Classification is a fundamental task in biology used to assign members to a class. While linear discriminant functions have long been effective, advances in phenotypic data collection are yielding increasingly high-dimensional datasets with more classes, unequal class covariances, and non-linear distributions. Numerous studies have deployed machine learning techniques to classify such distributions, but they are often restricted to a particular organism, a limited set of algorithms, and/or a specific classification task.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important.

View Article and Find Full Text PDF

Studying how spatially discrete neuroanatomical regions across the brain interact is critical to advancing our understanding of the brain. Traditional neuroimaging techniques have led to many important discoveries about the nature of these interactions, termed functional connectivity. However, in animal models these traditional neuroimaging techniques have generally been limited to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) induces action potentials to induce plastic changes in the brain with increasing evidence for the therapeutic importance of brain-wide functional network effects of rTMS; however, the influence of sub-action potential threshold (low-intensity; LI-) rTMS on neuronal activity is largely unknown. We investigated whether LI-rTMS modulates neuronal activity and functional connectivity and also specifically assessed modulation of parvalbumin interneuron activity. We conducted a brain-wide analysis of c-Fos, a marker for neuronal activity, in mice that received LI-rTMS to visual cortex.

View Article and Find Full Text PDF

Memory storage and retrieval are shaped by past experiences. Prior learning and memory episodes have numerous impacts on brain structure from micro to macroscale. Previous experience with specific forms of learning increases the efficiency of future learning.

View Article and Find Full Text PDF

During chronic infection, the single celled parasite, Toxoplasma gondii, can migrate to the brain where it has been associated with altered dopamine function and the capacity to modulate host behavior, increasing risk of neurocognitive disorders. Here we explore alterations in dopamine-related behavior in a new mouse model based on stimulant (cocaine)-induced hyperactivity. In combination with cocaine, infection resulted in heightened sensorimotor deficits and impairment in prepulse inhibition response, which are commonly disrupted in neuropsychiatric conditions.

View Article and Find Full Text PDF

Adult neurogenesis, the proliferation and integration of newly generated neurons, has been observed in the adult mammalian hippocampus of many species. Numerous studies have also found adult neurogenesis in the human hippocampus, but several recent high-profile studies have suggested that this process is considerably reduced in humans, occurring in children but not in adults. In comparison, rodent studies also show age-related decline but a greater degree of proliferation of new neurons in adult animals.

View Article and Find Full Text PDF

Postnatal hippocampal neurogenesis has been demonstrated to affect learning and memory in numerous ways. Several studies have now demonstrated that increased neurogenesis can induce forgetting of memories acquired prior to the manipulation of neurogenesis and, as a result of this forgetting can also facilitate new learning. However, the mechanisms mediating neurogenesis-induced forgetting are not well understood.

View Article and Find Full Text PDF

To better understand complex systems, such as the brain, studying the interactions between multiple brain regions is imperative. Such experiments often require delineation of multiple brain regions on microscopic images based on preexisting brain atlases. Experiments examining the relationships of multiple regions across the brain have traditionally relied on manual plotting of regions.

View Article and Find Full Text PDF

The hippocampus is a critical structure involved in many forms of learning and memory. It is also one of the only regions in the mammalian brain that continues to generate new neurons throughout adulthood. This process of adult neurogenesis may increase the plasticity of the hippocampus which could be beneficial for learning but has also been demonstrated to decrease the stability of previously acquired memories.

View Article and Find Full Text PDF

The formation and retention of hippocampus-dependent memories is impacted by neurogenesis, a process that involves the production of new neurons in the dentate gyrus of the hippocampus. Recent studies demonstrate that increasing neurogenesis after memory formation induces forgetting of previously acquired memories. Neurogenesis-induced forgetting was originally demonstrated in mice, but a recent report suggests that the same effect may be absent in rats.

View Article and Find Full Text PDF

The gut microbiome has profound effects on development and function of the nervous system. Recent evidence indicates that disruption of the gut microbiome leads to altered hippocampal neurogenesis. Here, we examined whether the effects of gut microbiome disruption on neurogenesis are age-dependent, given that both neurogenesis and the microbiome show age-related changes.

View Article and Find Full Text PDF

Arc (activity-regulated cytoskeleton-associated protein) is an immediate early gene that may be used to label recently active neurons. Arc is transcribed following neuronal activity, and its mRNA is then rapidly transported to dendrites. This feature allows nuclear-localized Arc mRNA to define ensembles of recently active neurons in systems or circuit neuroscience.

View Article and Find Full Text PDF

As adult-generated neurons integrate into hippocampal circuits, they compete with mature neurons for inputs from the entorhinal cortex. By reducing spines on mature granule cells, McAvoy et al. (2016) find that new neurons integrate more efficiently, and this facilitates learning.

View Article and Find Full Text PDF

Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice.

View Article and Find Full Text PDF

Antidepressant drugs are too often ineffective, the exact mechanism of efficacy is still ambiguous, and there has been a paucity of novel targets for pharmacotherapy. In an attempt to understand the pathogenesis of depression and subsequently develop more efficacious antidepressant drugs, multiple theories have been proposed, including the modulation of neurotransmission, the upregulation of neurogenesis and neurotrophic factors, normalizing hypothalamic-pituitary-adrenal reactivity, and the reduction of neuroinflammation; all of which have supporting lines of evidence. Therefore, an ideal molecular target for novel pharmaceutical intervention would function at the confluence of these theories.

View Article and Find Full Text PDF

The development, refinement, and use of techniques that allow high-throughput imaging of whole brains with cellular resolution will help us understand the complex functions of the brain. Such techniques are crucial for the analysis of complete neuronal morphology-anatomical and functional-connectivity, and repeated molecular phenotyping. CLARITY is a recently introduced technique that produces structurally intact, yet optically transparent tissue, which may be labeled and imaged without sectioning.

View Article and Find Full Text PDF