Introduction: Pressure-volume (PV) loops can be used to assess both load-dependent and load-independent measures of cardiac hemodynamics. However, analysis of PV loops during exercise is challenging as it requires invasive measures. Using a novel method, it has been shown that left ventricular (LV) PV loops at rest can be obtained non-invasively from cardiac magnetic resonance imaging (CMR) and brachial pressures.
View Article and Find Full Text PDFA novel method to derive pressure-volume (PV) loops noninvasively from cardiac magnetic resonance images has recently been developed. The aim of this study was to evaluate inter- and intraobserver variability of hemodynamic parameters obtained from noninvasive PV loops in healthy controls, subclinical diastolic dysfunction (SDD), and patients with heart failure with preserved ejection fraction, mildly reduced ejection fraction, and reduced ejection fraction. We included 75 subjects, of whom 15 were healthy controls, 15 subjects with SDD (defined as fulfilling 1 to 2 echocardiographic criteria for diastolic dysfunction), and 15 patients with preserved ejection fraction, 15 with mildly reduced ejection fraction, and 15 with reduced ejection fraction.
View Article and Find Full Text PDFKinetic energy (KE) of intracardiac blood flow reflects myocardial work spent on accelerating blood and provides a mechanistic window into diastolic filling dynamics. Diastolic dysfunction may represent an early stage in the development of heart failure (HF). Here we evaluated the hemodynamic effects of impaired diastolic function in subjects with and without HF, testing the hypothesis that left ventricular KE differs between controls, subjects with subclinical diastolic dysfunction (SDD), and patients with HF.
View Article and Find Full Text PDFExercise cardiovascular magnetic resonance (CMR) can unmask cardiac pathology not evident at rest. Real-time CMR in free breathing can be used, but respiratory motion may compromise quantification of left ventricular (LV) function. We aimed to develop and validate a post-processing algorithm that semi-automatically sorts real-time CMR images according to breathing to facilitate quantification of LV function in free breathing exercise.
View Article and Find Full Text PDF