Synthetic hemozoin crystals (β-hematin) are assembled with aluminium nanoparticles (nAl) to create a nanomaterial composite that is highly energetic and reactive. The results here demonstrate that hemozoin rapidly oxidizes the nAl fuel to release large amounts of energy (+12.5 ± 2.
View Article and Find Full Text PDFThe performance of aluminum nanomaterial based energetic formulations is dependent on the mass transport, diffusion distance, and stability of reactive components. Here we use a biologically inspired approach to direct the assembly of oxidizer loaded protein cages onto the surface of aluminum nanoparticles to improve reaction kinetics by reducing the diffusion distance between the reactants. Ferritin protein cages were loaded with ammonium perchlorate (AP) or iron oxide and assembled with nAl to create an oxidation-reduction based energetic reaction and the first demonstration of a nanoscale biobased thermite material.
View Article and Find Full Text PDFWith growing interest in the development of new composite systems for a variety of applications that require easily processable materials and adequate structural properties with high energy densities, we have pursued the chemical functionalization of oxide-passivated aluminum nanoparticles (nAl) using three acrylic monomers, 3-methacryloxypropyltrimethoxysilane (MPS), 2-carboxyethyl acrylate (CEA), and phosphonic acid 2-hydroxyethyl methacrylate ester (PAM), to provide chemical compatibility within various solvent and polymeric systems. Fourier transform infrared and X-ray photoelectron spectroscopy suggest that attachment of MPS and PAM monomers occurs through the formation of bonds directly to the passivated oxide surface upon reaction with surface hydroxyls, whereas CEA monomers interact through the formation of ionic carboxylate binding to aluminum atoms within the oxide. The coated particles demonstrate enhanced miscibility in common organic solvents and monomers; MPS and PAM coatings are additionally shown to inhibit oxidation of the aluminum particles when exposed to aqueous environments at room temperature, and PAM coatings are stable at even elevated temperatures.
View Article and Find Full Text PDF