J Coll Physicians Surg Pak
February 2014
Objective: To explore the relationships between the subunits (α, β and γ) of the high affinity IgE receptor (Fc&RI) and its ability to mediate transmembrane signaling.
Study Design: Experimental study.
Place And Duration Of Study: Department of Molecular Biology and Biotechnology, University of Sheffield, UK, from 2008 to 2009.
The Cε2 and Cε4 domains are considered as scaffolds, allowing Cε3 domains to assume an appropriate orientation to interact with FcεRI (Wurzburg and Jardetzky, 2002; Hunter et al., 2008). Human/canine IgE chimeric antibodies were expressed to assess the nature of the contribution of Cε2 and Cε4 domains to bind to and induce target cell degranulation via FcεRIα.
View Article and Find Full Text PDFThe interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor (FcεRI) is important in anti-parasitic immunity and plays a central role in allergic responses. It has been shown that the human Cε3 domains comprise the binding sites for FcεRIα and crystal structure determination has shown that amino acids in four sites contribute to the high affinity of the interaction. The role of homologous residues within canine IgE-Fc, i.
View Article and Find Full Text PDFThe high-affinity IgE receptor (FcɛRI) is formed by the IgE-binding α subunit, β subunit and γ subunits homodimer. All three subunits are required for proper expression of the receptor on the plasma membrane of mast cells and basophils. However, the exact molecular mechanism of inter-subunit interactions required for correct expression and function of the FcɛRI complex remains to be identified.
View Article and Find Full Text PDFThe high-affinity receptor complex for IgE plays a pivotal role in allergic responses since cross-linking of the high-affinity IgE receptor (FcɛRI) on target cells initiates a signaling cascade facilitating release of inflammatory mediators causing allergic responses. The transmembrane regions of the ligand binding domains of the high-affinity IgE and low-affinity IgG receptors share an invariant motif (LFAVDTGL) containing a polar aspartate within a predominantly non-polar setting. The functional importance of this aspartate residue (D194) in FcɛRI-mediated receptor signaling was assessed by site-directed mutagenesis.
View Article and Find Full Text PDFIdentification of the domain(s) of canine IgE that interact with Fc epsilon RI alpha may lead to novel therapeutic intervention strategies that inhibit the ability of canine IgE to engage Fc epsilon RI alpha. A panel of canine-human Fc IgE chimeric antibodies was constructed to investigate this interaction by replacing canine IgE-Fc domains with the corresponding human IgE-Fc domains since human IgE-Fc does not recognize canine Fc epsilon RI alpha. beta-Hexosaminidase release assays were performed to assess the ability of the chimeric antibodies to bind to and sensitize a novel RBL cell line transfected with canine Fc epsilon RI alpha for antigen induced mediator release.
View Article and Find Full Text PDFThe interaction of immunoglobulin E (IgE) with its low affinity receptor (FcepsilonRII/CD23) plays a central role in the initiation and regulation of type I hypersensitivity responses. We have previously identified the importance of amino acid residues in the A-B loop of the Cepsilon3 domain of human IgE and implicated a region close to the glycosylation site at asparagine 371 as contributing to IgE-CD23 interaction. These residues were now targeted by site-directed mutagenesis.
View Article and Find Full Text PDF