Publications by authors named "Jonathan E Bard"

Article Synopsis
  • The study analyzes COVID-19 transmission in Western New York by integrating genomic sequencing data from patients with a SEIR computational model that considers geographical factors.
  • *It investigates how genetic variations in the virus, along with population density and movement patterns, influence the spread of SARS-CoV-2 within specific regions.
  • *The findings highlight local transmission dynamics, suggesting potential cross-county spread, and aim to inform better public health strategies for future virus control.*
View Article and Find Full Text PDF

The kinetoplastid parasite, , undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency.

View Article and Find Full Text PDF

Mouse postnatal neural stem cells (pNSCs) can be expanded in vitro in the presence of epidermal growth factor and fibroblast growth factor 2 and upon removal of these factors cease proliferation and generate neurons, astrocytes, and oligodendrocytes. The genetic requirements for self-renewal and lineage-commitment of pNSCs are incompletely understood. In this study, we show that the transcription factors NFIA and NFIB, previously shown individually, to be essential for the normal commitment of pNSCs to the astrocytic lineage in vivo, are jointly required for normal self-renewal of pNSCs in vitro and in vivo.

View Article and Find Full Text PDF

Rationale: We showed that levels of a murine mitochondrial noncoding RNA, , increase in alveolar epithelial type 2 cells exposed to extracts from cigarette smoke. The transcripts translocate to the nucleus, upregulating nucleus-encoded mitochondrial genes and mitochondrial bioenergetics. This response is lost after chronic exposure to smoke in a mouse model of chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture.

View Article and Find Full Text PDF

The sequencing of human virus genomes from wastewater samples is an efficient method for tracking viral transmission and evolution at the community level. However, this requires the recovery of viral nucleic acids of high quality. We developed a reusable tangential-flow filtration system to concentrate and purify viruses from wastewater for genome sequencing.

View Article and Find Full Text PDF

Mitochondrial calcium ( Ca ) uptake occurs via the Mitochondrial Ca Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs).

View Article and Find Full Text PDF

Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis.

View Article and Find Full Text PDF

Traditional analysis of genomic data from bulk sequencing experiments seek to group and compare sample cohorts into biologically meaningful groups. To accomplish this task, large scale databases of patient-derived samples, like that of TCGA, have been established, giving the ability to interrogate multiple data modalities per tumor. We have developed a computational strategy employing multimodal integration paired with spectral clustering and modern dimension reduction techniques such as PHATE to provide a more robust method for cancer sub-type classification.

View Article and Find Full Text PDF

Determining mutation signatures is standard for understanding the etiology of human tumors and informing cancer treatment. Multiple determinants of DNA replication fidelity prevent mutagenesis that leads to carcinogenesis, including the regulation of free deoxyribonucleoside triphosphate pools by ribonucleotide reductase and repair of replication errors by the mismatch repair system. We identified genetic interactions between rnr1 alleles that skew and/or elevate deoxyribonucleoside triphosphate levels and mismatch repair gene deletions.

View Article and Find Full Text PDF

The myeloid-derived bone marrow progenitor populations from different anatomical locations are known to have diverse osteoclastogenesis potential. Specifically, myeloid progenitors from the tibia and femur have increased osteoclast differentiation potential compared to myeloid progenitors from the alveolar process. In this study, we explored the differences in the myeloid lineage progenitor cell populations in alveolar (mandibular) bone versus long (femur) bone using flow cytometry and high-throughput single cell RNA sequencing (scRNA-seq) to provide a comprehensive transcriptional landscape.

View Article and Find Full Text PDF

Distinct mutation signatures arise from environmental exposures and/or from defects in metabolic pathways that promote genome stability. The presence of a particular mutation signature can therefore predict the underlying mechanism of mutagenesis. These insults to the genome often alter dNTP pools, which itself impacts replication fidelity.

View Article and Find Full Text PDF

Atoh7 has been believed to be essential for establishing the retinal ganglion cell (RGC) lineage, and Pou4f2 and Isl1 are known to regulate RGC specification and differentiation. Here we report our further study of the roles of these transcription factors. Using bulk RNA-seq, we identify genes regulated by the three transcription factors, which expand our understanding of the scope of downstream events.

View Article and Find Full Text PDF

Multipotent ΔNp63-positive cells maintain all epithelial cell lineages of the embryonic and adult salivary gland (SG). However, the molecular mechanisms by which ΔNp63 regulates stem/progenitor (SP) cell populations in the SG remains elusive. To understand the role of ΔNp63 in directing cell fate choices in this gland, we have generated ΔNp63-deleted adult mice and primary salivary cell cultures to probe alterations in SP cell differentiation and function.

View Article and Find Full Text PDF

Background: Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models.

Methods: Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aβ uptake.

View Article and Find Full Text PDF

Background: Shiga toxin-producing E. coli (STECs) are foodborne pathogens associated with bloody diarrhea and hemolytic uremic syndrome (HUS). Although the STEC O157 serogroup accounts for the highest number of infections, HUS-related complications and deaths, the STEC non-O157, as a group, accounts for a larger proportion of STEC infections and lower HUS cases.

View Article and Find Full Text PDF

Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression.

View Article and Find Full Text PDF

Recently our group demonstrated that acellular tissue engineered vessels (A-TEVs) comprised of small intestinal submucosa (SIS) immobilized with heparin and vascular endothelial growth factor (VEGF) could be implanted into the arterial system of a pre-clinical ovine animal model, where they endothelialized within one month and remained patent. Here we report that immobilized VEGF captures blood circulating monocytes (MC) with high specificity under a range of shear stresses. Adherent MC differentiate into a mixed endothelial (EC) and macrophage (Mφ) phenotype and further develop into mature EC that align in the direction of flow and produce nitric oxide under high shear stress.

View Article and Find Full Text PDF

A common feature shared by systemic fungal pathogens of environmental origin, such as Cryptococcus neoformans, is their ability to adapt to mammalian core body temperature. In C. neoformans, this adaptation is accompanied by Ccr4-mediated decay of ribosomal protein mRNAs.

View Article and Find Full Text PDF

The direct conversion of accessible cells such as human fibroblasts to inaccessible cells, particularly neurons, opens up many opportunities for using the human model system to study diseases and discover therapies. Previous studies have indicated that the neuronal conversion of adult human skin fibroblasts is much harder than that for human lung fibroblasts, which are used in many experiments. Here we formally report this differential plasticity of human skin versus lung fibroblasts in their transdifferentiation to induced neurons.

View Article and Find Full Text PDF

Stem and progenitor cells of the submandibular salivary gland (SMG) give rise to, maintain, and regenerate the multiple lineages of mature epithelial cells including those belonging to the ductal, acinar, basal and myoepithelial subtypes. Here we have exploited single cell RNA-sequencing and in vivo genetic lineage tracing technologies to generate a detailed map of the cell fate trajectories and branch points of the basal and myoepithelial cell populations of the mouse SMG during embryonic development and in adults. Our studies show that the transcription factor p63 and alpha-smooth muscle actin (SMA) serve as faithful markers of the basal and myoepithelial cell lineages, respectively and that both cell types are endowed with progenitor cell properties.

View Article and Find Full Text PDF

Vitamin D insufficiency (serum 25-OH vitamin D < 30 ng/ml) affects 70-80% of the general population, yet the long-term impacts on physical performance and the progression of sarcopenia are poorly understood. We therefore followed 6-month-old male C57BL/6J mice (=6) consuming either sufficient (STD, 1000 IU) or insufficient (LOW, 125 IU) vitamin D3/kg chow for 12 months (equivalent to 20-30 human years). LOW supplemented mice exhibited a rapid decline of serum 25-OH vitamin D levels by two weeks that remained between 11-15 ng/mL for all time points thereafter.

View Article and Find Full Text PDF

Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC).

View Article and Find Full Text PDF

Uridine insertion/deletion RNA editing in kinetoplastids entails the addition and deletion of uridine residues throughout the length of mitochondrial transcripts to generate translatable mRNAs. This complex process requires the coordinated use of several multiprotein complexes as well as the sequential use of noncoding template RNAs called guide RNAs. The majority of steady-state mitochondrial mRNAs are partially edited and often contain regions of mis-editing, termed junctions, whose role is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Transcription factors, like NF-κB, regulate not only protein-coding genes but also microRNAs (miRNAs) that influence mRNA stability and translation.
  • Researchers investigated RIPK1 to identify miRNAs regulated by NF-κB, including miR-146a, miR-215, and miR-497, noting their induction by IL-1β depends on NF-κB activity.
  • The study found that miR-497 can target the IKBKB gene, potentially reducing IKKβ production, which suggests a new regulatory mechanism for controlling NF-κB activation pathways.
View Article and Find Full Text PDF