Publications by authors named "Jonathan D Halverson"

We study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C and C, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation.

View Article and Find Full Text PDF

The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter larger than the entanglement spacing is observed in a melt of linear polymers before the onset of Fickian NP diffusion.

View Article and Find Full Text PDF

We propose a general strategy of "sequential programmable self-assembly" that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding.

View Article and Find Full Text PDF

DNA-driven assembly of nanoscale objects has emerged as a powerful platform for the creation of materials by design via self-assembly. Recent years have seen much progress in the experimental realization of this approach for three-dimensional systems. In contrast, two-dimensional (2D) programmable nanoparticle (NP) systems are not well explored, in part due to the difficulties in creating such systems.

View Article and Find Full Text PDF

We review pro and contra of the hypothesis that generic polymer properties of topological constraints are behind many aspects of chromatin folding in eukaryotic cells. For that purpose, we review, first, recent theoretical and computational findings in polymer physics related to concentrated, topologically simple (unknotted and unlinked) chains or a system of chains. Second, we review recent experimental discoveries related to genome folding.

View Article and Find Full Text PDF
DNA-programmed mesoscopic architecture.

Phys Rev E Stat Nonlin Soft Matter Phys

June 2013

We study the problem of the self-assembly of nanoparticles (NPs) into finite mesoscopic structures with a programmed local morphology and complex overall shape. Our proposed building blocks are NPs that are directionally functionalized with DNA. The combination of directionality and selectivity of interactions allows one to avoid unwanted metastable configurations, which have been shown to lead to slow self-assembly kinetics even in much simpler systems.

View Article and Find Full Text PDF

Ring polymers remain a challenge to our understanding of polymer dynamics. Experiments are difficult to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium and nonequilibrium molecular dynamics simulations we have investigated the structure, dynamics, and rheology of perfectly controlled ring-linear polymer blends of chains of up to about 14 entanglements per chain, comparable to experimental systems.

View Article and Find Full Text PDF

Molecular dynamics simulations were conducted to investigate the dynamic properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. The ring melts were found to diffuse faster than their linear counterparts, with both architectures approximately obeying a D ∼ N(-2.

View Article and Find Full Text PDF

Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared, [linear span]R(g)(2)[linear span], was found to scale as N(4/5) for an intermediate regime and N(2/3) for the larger rings indicating an overall conformation of a crumpled globule.

View Article and Find Full Text PDF

The dynamic behavior of a nanodroplet of a pure liquid on a wetting gradient was studied using molecular dynamics simulation. The spontaneous motion of the droplet is induced by a force imbalance at the contact line. We considered a Lennard-Jones system as well as water on a self-assembled monolayer (SAM).

View Article and Find Full Text PDF