High-throughput screening (HTS) generates an abundance of data that are a valuable resource to be mined. Dockers and data miners can use "real-world" HTS data to test and further develop their tools. A screen of 50,000 diverse small molecules was carried out against Escherichia coli dihydrofolate reductase (DHFR) and compared with a previous screen of 50,000 compounds against the same target.
View Article and Find Full Text PDFThe causative agent of severe acute respiratory syndrome (SARS) has been identified as a novel coronavirus, SARS-CoV. The main proteinase of SARS-CoV, 3CLpro, is an attractive target for therapeutics against SARS owing to its fundamental role in viral replication. We sought to identify novel inhibitors of 3CLpro to advance the development of appropriate therapies in the treatment of SARS.
View Article and Find Full Text PDFGene dosage has frequently been exploited to select for genetic interactions between a particular mutant and clones from a random genomic library at high copy. We report here the first use of multicopy suppression as a forward genetic method to determine cellular targets and potential resistance mechanisms for novel antibacterial compounds identified through high-throughput screening. A screen of 8640 small molecules for growth inhibition of a hyperpermeable strain of Escherichia coli led to the identification of 49 leads for suppressor selection from clones harboring an E.
View Article and Find Full Text PDFThis communication describes the high-throughput screen of a diverse library of 50,000 small molecules against Escherichia coli dihydrofolate reductase to detect inhibitors. Sixty-two compounds were identified as having significant inhibitory activity against the enzyme. Secondary screening of these revealed twelve molecules that were competitive with dihydrofolate, nine of which have not been previously characterized as inhibitors of dihydrofolate reductase.
View Article and Find Full Text PDF